File: Guide_honeycomb.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (506 lines) | stat: -rw-r--r-- 17,444 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*******************************************************************************
*
* McStas, neutron ray-tracing pacxkage
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Guide_honeycomb
*
* %I
* Written by: G. Venturi
* Date: Apr 2003
* Origin: <a href="http://www.ill.fr">ILL (France)</a>.
* Modified by: G. Venturi, Made Honeycomb from Guide_gravity (Apr 2003)
* Modified by: E. Farhi, corrected gravitation bug (Feb 2005)
* Modified by: E. Farhi, uniformize parameter names (Jul 2008)
*
* Neutron guide with gravity and honeycomb geometry. Can be channeled and focusing.
*
* %D
* Models a honeycomb guide tube centered on the Z axis. The entrance lies
* in the X-Y plane. Gravitation applies also when reaching the guide input
* window. The guide can be channeled (hexagonal channel section; nslit,d parameters).
* The guide coating specifications may be entered via different ways (global,
* or for each wall m-value).
* For details on the geometry calculation see the description in the McStas
* reference manual.
*
* Example: Guide_honeycomb(w1=0.1, w2=0.1, l=12,
*           R0=0.99, Qc=0.0219, alpha=6.07, m=1.0, W=0.003, nslit=1, d=0.0005)
*
* %P
* INPUT PARAMETERS:
*
* w1: [m]          Width at the guide entry
* w2: [m]          Width at the guide exit. If zero, sets w2=w1.
* l: [m]           length of guide
* R0: [1]          Low-angle reflectivity
* Qc: [AA-1]       Critical scattering vector
* alpha: [AA]      Slope of reflectivity
* m: [1]           m-value of material. Zero means completely absorbing.
* W: [AA-1]        Width of supermirror cut-off
* d: [m]           Thickness of subdividing walls [0]
* nslit: [1]       Number of horizontal channels in the guide (>= 1) [1]
*                 (nslit-1 vertical dividing walls)
*
* Optional input parameters: (different ways for m-specifications)
*
* mright: [1]      m-value of material for right.     vertical mirror
* mleft: [1]       m-value of material for left.      vertical mirror
* mleftup: [1]     m-value of material for leftup.    oblique mirror
* mrightup: [1]    m-value of material for rightdown. oblique mirror
* mrightdown: [1]  m-value of material for leftup.    oblique mirror
* mleftdown: [1]   m-value of material for rightdown. oblique mirror
* G: [m/s2]        Gravitation norm. 0 value disables G effects.
*
* OUTPUT PARAMETERS
*
* GVars: [1]       internal variables
* GVars.N_reflection: (1) Array of the cumulated Number of reflections
*                   N_reflection[0] total nb of reflections
*                   N_reflection[1,2,3,4.5.6]  reflections
*                   N_reflection[7] total nb neutrons exiting guide
*                   N_reflection[8] total nb neutrons entering guide
*
* %D
* Example values: m=4 Qc=0.02 W=1/300 alpha=6.49 R0=1
*
* %E
*******************************************************************************/

DEFINE COMPONENT Guide_honeycomb

SETTING PARAMETERS (w1, w2=0, l,
R0=0.995, Qc=0.0218, alpha=4.38, m=1.0, W=0.003, nslit=1, d=0.0005,
mleftup=-1, mrightup=-1, mleftdown=-1, mrightdown=-1,mleft=-1, mright=-1, G=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "ref-lib"
#ifndef Honeycomb_guide_Version
#define Honeycomb_guide_Version "$Revision$"

#ifndef PROP_GRAV_DT
#error McStas : You need PROP_GRAV_DT (McStas >= 1.4.3) to run this component
#endif

/*
* G:       (m/s^2) Gravitation acceleration along y axis [-9.81]
* Gx:      (m/s^2) Gravitation acceleration along x axis [0]
* Gy:      (m/s^2) Gravitation acceleration along y axis [-9.81]
* Gz:      (m/s^2) Gravitation acceleration along z axis [0]
* mh:      (1)    m-value of material for left/right vert. mirrors
* mv:      (1)    m-value of material for top/bottom horz. mirrors
* mx:      (1)    m-value of material for left/right vert. mirrors
* my:      (1)    m-value of material for top/bottom horz. mirrors
*/

  typedef struct Honeycomb_guide_Vars
  {
    double gx;
    double gy;
    double gz;
    double nx[8], ny[8], nz[8];
    double wx[8], wy[8], wz[8];
    double A[8], norm_n2[8], norm_n[8];
    long   N_reflection[9];
    double w1c, w2c;
    double M[7];
    double nzC[7], norm_n2xy[7], Axy[7];
    char   compcurname[256];
    double warnings;
  } Honeycomb_guide_Vars_type;

  void Honeycomb_guide_Init(Honeycomb_guide_Vars_type *aVars,
    MCNUM a_w1, MCNUM a_w2, MCNUM a_l, MCNUM a_R0,
    MCNUM a_Qc, MCNUM a_alpha, MCNUM a_m, MCNUM a_W, MCNUM a_nslit, MCNUM a_d,
    MCNUM a_Gx, MCNUM a_Gy, MCNUM a_Gz, MCNUM a_mright, MCNUM a_mleft, MCNUM a_mleftup,
    MCNUM a_mrightdown, MCNUM a_mrightup, MCNUM a_mleftdown)
  {
    int i;

    for (i=0; i<8; aVars->N_reflection[i++] = 0);
    for (i=0; i<7; aVars->M[i++] = 0);

    aVars->gx = a_Gx; /* The gravitation vector in the current component axis system */
    aVars->gy = a_Gy;
    aVars->gz = a_Gz;
    aVars->warnings=0;

    if (a_nslit <= 0) { fprintf(stderr,"%s: Fatal: no channel in this guide (kh or nslit=0).\n", aVars->compcurname); exit(-1); }
    if (a_d < 0)  { fprintf(stderr,"%s: Fatal: subdividing walls have negative thickness in this guide (d<0).\n", aVars->compcurname); exit(-1); }

    aVars->w1c = 0.5*(a_w1 - (a_nslit-1) *2*a_d)/(double)a_nslit;            /*INPUT APOTHEM*/
    aVars->w2c = 0.5*(a_w2 - (a_nslit-1) *2*a_d)/(double)a_nslit;            /*OUTPUT APOTHEM*/

    for (i=0; i <= 6;   aVars->M[i++]=a_m);
    if (a_mright     >= 0) aVars->M[1] =a_mright;
    if (a_mleft      >= 0) aVars->M[2] =a_mleft;
    if (a_mleftup    >= 0) aVars->M[3] =a_mleftup;
    if (a_mrightdown >= 0) aVars->M[4] =a_mrightdown;
    if (a_mrightup   >= 0) aVars->M[5] =a_mrightup;
    if (a_mleftdown  >= 0) aVars->M[6] =a_mleftdown;
    /* n: normal vectors to surfaces */
    aVars->nx[1] = -a_l;    aVars->ny[1] =  0;   aVars->nz[1] =  (aVars->w2c-aVars->w1c); /* 1:+X right     */
    aVars->nx[2] = +a_l;    aVars->ny[2] =  0;   aVars->nz[2] =  -aVars->nz[1];           /* 2:-X left      */

    aVars->nx[3] = +a_l*0.5;   aVars->ny[3] = -0.866025*a_l; aVars->nz[3] =  (aVars->w2c-aVars->w1c); /* 3:+Y leftup*/
    aVars->nx[4] = -a_l*0.5;   aVars->ny[4] = +0.866025*a_l; aVars->nz[4] = -(aVars->w2c-aVars->w1c); /* 4:+Y rightdown*/
    aVars->nx[5] = -a_l*0.5;   aVars->ny[5] = -0.866025*a_l; aVars->nz[5] =  (aVars->w2c-aVars->w1c); /* 5:+Y rightup   */
    aVars->nx[6] = +a_l*0.5;   aVars->ny[6] = +0.866025*a_l; aVars->nz[6] = -(aVars->w2c-aVars->w1c); /* 6:+Y leftdown */

    aVars->nx[7] =  0;   aVars->ny[7] =  0;   aVars->nz[7] =  a_l;
    aVars->nx[0] =  0;   aVars->ny[0] =  0;   aVars->nz[0] =  -a_l;
    /* w: a point on these surfaces */
    aVars->wx[1] =  (aVars->w1c);      aVars->wy[1] = 0;                           aVars->wz[1] = 0;   /* 1: right     */
    aVars->wx[2] =  -(aVars->w1c);     aVars->wy[2] = 0;                           aVars->wz[2] = 0;   /* 2: left      */
    aVars->wx[3] = -0.5*(aVars->w1c);  aVars->wy[3] = +0.866025*(aVars->w1c);      aVars->wz[3] = 0;   /* 3: leftup    */
    aVars->wx[4] = +0.5*(aVars->w1c);  aVars->wy[4] = -0.866025*(aVars->w1c);      aVars->wz[4] = 0;   /* 4: rightdown */
    aVars->wx[5] = +0.5*(aVars->w1c);  aVars->wy[5] = +0.866025*(aVars->w1c);      aVars->wz[5] = 0;   /* 5: rightup   */
    aVars->wx[6] = -0.5*(aVars->w1c);  aVars->wy[6] = -0.866025*(aVars->w1c);      aVars->wz[6] = 0;   /* 6: leftdown  */
    aVars->wx[7] =  0;                 aVars->wy[7] =  0;                          aVars->wz[7] = a_l; /* 7:+Z exit    */
    aVars->wx[0] =  0;                 aVars->wy[0] =  0;                          aVars->wz[0] = 0;   /* 0:Z0 input   */

    for (i=0; i <= 7; i++)
    {
      aVars->A[i] = scalar_prod(aVars->nx[i], aVars->ny[i], aVars->nz[i], aVars->gx, aVars->gy, aVars->gz)/2;
      aVars->norm_n2[i] = aVars->nx[i]*aVars->nx[i] + aVars->ny[i]*aVars->ny[i] + aVars->nz[i]*aVars->nz[i];
      if (aVars->norm_n2[i] <= 0)
     { fprintf(stderr,"%s: Fatal: normal vector norm %i is null/negative ! check guide dimensions.\n", aVars->compcurname, i); exit(-1); } /* should never occur */
      else
        aVars->norm_n[i] = sqrt(aVars->norm_n2[i]);
    }
    /* partial computations for sides, to save computing time */
    for (i=1; i <= 6; i++)
    {
      aVars->nzC[i]      = aVars->nz[i];
      aVars->norm_n2xy[i]= aVars->nx[i]*aVars->nx[i] + aVars->ny[i]*aVars->ny[i];
      aVars->Axy[i]      =(aVars->nx[i]*aVars->gx    + aVars->ny[i]*aVars->gy)/2;
    }
  }

  #pragma acc routine seq
  int Honeycomb_guide_Trace(double *dt,
        Honeycomb_guide_Vars_type *aVars,
        double cx, double cy, double cz,
        double cvx, double cvy, double cvz,
        double cxnum, int nslit, double cynum)
  {
    double B, C;
    int    ret=0;
    int    side=0;
    double n1;
    double dt0, dt_min=0;
    int i;
    double loc_num;
    int    i_slope=3;

    /* look if there is a previous intersection with guide sides */
    /* A = 0.5 n.g; B = n.v; C = n.(r-W); */
    /* 5=+Z side: n=(0, 0, -l) ; W = (0, 0, l) (at z=l, guide exit)*/
    B = aVars->nz[7]*cvz; C = aVars->nz[7]*(cz - aVars->wz[7]);
    ret = solve_2nd_order(&dt0, NULL, aVars->A[7], B, C);
    if (ret && dt0>10e-10)
    { dt_min = dt0; side=7; }

    loc_num = (3*cynum+cxnum)/2;
    for (i=6; i>0; i--)
    {
      if (i == 4) { i_slope=1; loc_num =(3*cynum-cxnum)/2; }
      if (i == 2) { i_slope=1; loc_num = cxnum;}

      if (aVars->nzC[i_slope] != 0) {
        n1=loc_num-1;
        loc_num++; loc_num++;
        aVars->nz[i] = aVars->nzC[i]*n1;
        aVars->A[i]  = aVars->Axy[i] + aVars->nz[i]*aVars->gz/2;
      }

      B = aVars->nx[i]*cvx + aVars->ny[i]*cvy + aVars->nz[i]*cvz;                            /* n.v */
      C = aVars->nx[i]*(cx-aVars->wx[i]) + aVars->ny[i]*(cy-aVars->wy[i]) + aVars->nz[i]*cz; /* n.(r-W) */

      ret = solve_2nd_order(&dt0, NULL, aVars->A[i], B, C);
      if (ret && dt0>10e-10 && (dt0<dt_min || !dt_min))
      { dt_min = dt0; side=i;
        if (aVars->nzC[i] != 0)
        { aVars->norm_n2[i] = aVars->norm_n2xy[i] + aVars->nz[i]*aVars->nz[i]; aVars->norm_n[i] = sqrt(aVars->norm_n2[i]); }
      }
     }

    *dt = dt_min;
    return (side);
  }
#endif
%}

DECLARE
%{
  Honeycomb_guide_Vars_type GVars;
  //#prama acc routine declare create(GVars)
%}

INITIALIZE
%{
  double Gx=0, Gy=9.81, Gz=0;
  Coords mcLocG;
  int i;
  
  if (!w2) w2=w1;

  if (W < 0 || nslit <= 0 || R0 < 0 || Qc < 0)
  { fprintf(stderr,"%s:Guide_gravity: W nslit R0 Qc must be >0.\n", NAME_CURRENT_COMP);
    exit(-1); }

  if (mcgravitation) G=-9.81;
  mcLocG = rot_apply(ROT_A_CURRENT_COMP, coords_set(Gx,G,Gz));
  coords_get(mcLocG, &Gx, &Gy, &Gz);

  strcpy(GVars.compcurname, NAME_CURRENT_COMP);
  Honeycomb_guide_Init(&GVars,
    w1, w2, l, R0,
    Qc, alpha, m, W, nslit, d,
    Gx, Gy, Gz,mright, mleft, mleftup, mrightdown, mrightup, mleftdown);

  if (!G) for (i=0; i<7; GVars.A[i++] = 0);
  //#pragma acc update device(GVars)
%}

TRACE
%{
  double B, C, dt;
  int    ret, bounces = 0;
  float    n,m1,nv,mv;
  int    nup=-1, mright1=-1;
  double xhole,yhole, y_min;
  double cn;
  double inside;
  double w_edge, w_adj; /* Channel displacement  */
  double h_edge, h_adj;
  double w_chnum,h_chnum,w_c,h_c; /* channel indexes */

  /* propagate to box input (with gravitation) in comp local coords */
  /* 0=Z0 side: n=(0, 0, l) ; W = (0, 0, 0) (at z=0, guide input)*/
  B = -l*vz; C = -l*z;

  ret = solve_2nd_order(&dt, NULL, GVars.A[0], B, C);
  if (ret && dt>0)
  {
    PROP_GRAV_DT(dt, GVars.gx, GVars.gy, GVars.gz);
    GVars.N_reflection[8]++;
  }
  /* check if we are in the box input, else absorb */
  if(dt > 0 && fabs(x) <= w1/2 && fabs(y) <= w1/2)
  {
    for(n=0; x>((2*n+1)*(GVars.w1c+d)) ; n++); nv=n;
    if (n==0) { for(n=0; x<((2*n-1)*(GVars.w1c+d)); n--); nv=n; }

    xhole=2*n*(GVars.w1c+d);
    if(x-xhole>0)  nup=1;
    y_min=1.732*(GVars.w1c+d);

    for(m1=0;y>((2*m1+1)*y_min); m1++); mv=m1;
    if (m1==0) { for (m1=0; y<((2*m1-1)*(y_min)); m1--); mv=m1; }

    yhole=2*m1*1.732*(GVars.w1c+d);
    if(y-yhole>0)  mright1=1;

    cn=1.1547*(GVars.w1c+d);
    inside=(fabs(y-yhole)+0.577351*fabs(x-xhole)-cn);
    if(inside>0)
    {
      xhole +=nup*(GVars.w1c+d);
      yhole +=mright1*(1.732*(GVars.w1c+d));
    }

    /*   double w_chnum,h_chnum;*/ /* channel indexes  */
    /* Shift origin to center of channel hit (absorb if hit dividing walls) */
    w_c=xhole/(GVars.w1c+d);
    h_c=yhole/(1.732*(GVars.w1c+d));
    w_chnum=rint(w_c);
    h_chnum=rint(h_c);

    x -=xhole;
    y -=yhole;
    w_adj = xhole;
    h_adj = yhole;
    if(fabs(x) > GVars.w1c)
    {
      x += xhole; /* Re-adjust origin */
      y += yhole;
      ABSORB;
    }
    if(fabs(x*0.5+y*0.866025) > GVars.w1c)
    {
      x += xhole; /* Re-adjust origin */
      y += yhole;
      ABSORB;
    }
    if(fabs(-x*0.5+y*0.866025) > GVars.w1c)
    {
      x += xhole; /* Re-adjust origin */
      y += yhole;
      ABSORB;
    }

    /* neutron is now in the input window of the guide */
    /* do loops on reflections in the box */
    for(;;)
    {
      /* get intersections for all box sides */
      double q;
      int side=0;

      bounces++;
      /* now look for intersection with guide sides and exit */

      side = Honeycomb_guide_Trace(&dt, &GVars, x, y, z,
          vx, vy, vz, w_chnum, nslit, h_chnum);

      /* only positive dt are valid */
      /* exit reflection loops if no intersection (neutron is after box) */
      if (side == 0 || dt <= 0)
        { if (GVars.warnings < 100)
              fprintf(stderr,"%s: warning: neutron has entered guide, but can not exit !\n", GVars.compcurname);
            GVars.warnings++;
          x += w_adj; y += h_adj; ABSORB; } /* should never occur */

      /* propagate to dt */
      PROP_GRAV_DT(dt, GVars.gx, GVars.gy, GVars.gz);

      /* do reflection on speed for l/r/u/d sides */
      if (side == 7) /* neutron reaches end of guide: end loop and exit comp */
        { GVars.N_reflection[side]++; x += w_adj; y += h_adj; SCATTER; x -= w_adj; y -= h_adj; break; }
      /* else reflection on a guide wall */
      if(GVars.M[side] == 0 || Qc == 0)  /* walls are absorbing */
        { x += w_adj; y += h_adj; ABSORB; }
      /* change/mirror velocity: h_f = v - n.2*n.v/|n|^2 */
      B = GVars.nx[side]*vx + GVars.ny[side]*vy + GVars.nz[side]*vz;  /* n.v */
      GVars.N_reflection[side]++; /* GVars.norm_n2 > 0 was checked at INIT */
      dt = 2*B/GVars.norm_n2[side]; /* 2*n.v/|n|^2 */
      vx -= GVars.nx[side]*dt;
      vy -= GVars.ny[side]*dt;
      vz -= GVars.nz[side]*dt;

      /* compute q and modify neutron weight */
      /* scattering q=|nslit_i-nslit_f| = V2Q*|vf - v| = V2Q*2*n.v/|n| */
      q = 2*V2Q*fabs(B)/GVars.norm_n[side];
      {
        double par[] = {R0, Qc, alpha, GVars.M[side], W};
        StdReflecFunc(q, par, &B);
      }
      if (B <= 0) { x += w_adj; y += h_adj; ABSORB; }
      else p *= B;
      x += w_adj; y += h_adj; SCATTER; x -= w_adj; y -= h_adj;
      GVars.N_reflection[0]++;
      /* go to the next reflection */
      if (bounces > 1000) ABSORB;
    } /* end for */
    x += w_adj; y += h_adj; /* Re-adjust origin after SCATTER */
  }
  else
    ABSORB;
%}

FINALLY
%{
if (GVars.warnings > 100) {
  fprintf(stderr,"%s: warning: neutron has entered guide, but can not exit !\n", GVars.compcurname);
  fprintf(stderr,"%s: warning: This message has been repeated %g times\n", GVars.compcurname, GVars.warnings);
}
%}


MCDISPLAY
%{
  int i,j;
  double a,b,c;
  double x0,x01,x1,x11,x2,x21;
  double y0,y01,y1,y11,y2,y21,y3,y31,y4,y41;

  

  for(j = -nslit/2; j <= nslit/2; j++)
  {
    y0 =  j*(GVars.w1c+d)*1.732;
    y01=  j*(GVars.w2c+d)*1.732;
    y1 =y0 +(GVars.w1c+d)/1.732;
    y11=y01+(GVars.w2c+d)/1.732;
    y2 =y0 -(GVars.w1c+d)/1.732;
    y21=y01-(GVars.w2c+d)/1.732;
    y3 =y0 +(GVars.w1c+d)*1.1547;
    y31=y01+(GVars.w2c+d)*1.1547;
    y4 =y0 -(GVars.w1c+d)*1.1547;
    y41=y01-(GVars.w2c+d)*1.1547;

     for(i = -nslit; i <= nslit; i++)

    {

      a=i+j;
      b=a/2+0.1;
      c=rint(b);

      if(fabs(c-b)<0.3)

      {

       x0 =  i*(GVars.w1c+d);
       x01=  i*(GVars.w2c+d);
       x1 =x0 +(GVars.w1c+d);
       x11=x01+(GVars.w2c+d);
       x2 =x0 -(GVars.w1c+d);
       x21=x01-(GVars.w2c+d);


       multiline(5,
                x1, y1, 0.0,
                x11, y11, (double)l,
                x21, y11, (double)l,
                x2, y1, 0.0,
                x1, y1, 0.0);


       multiline(5,
                x1, y1, 0.0,
                x11, y11, (double)l,
                x01, y31, (double)l,
                x0, y3, 0.0,
                x1, y1, 0.0);

       multiline(5,
                x0, y3, 0.0,
                x01, y31, (double)l,
                x21, y11, (double)l,
                x2, y1, 0.0,
                x0, y3, 0.0);

       multiline(5,
                x2, y1, 0.0,
                x21, y11, (double)l,
                x21, y21, (double)l,
                x2, y2, 0.0,
                x2, y1, 0.0);

       multiline(5,
                x2, y2, 0.0,
                x21, y21, (double)l,
                x01, y41, (double)l,
                x0, y4, 0.0,
                x2, y2, 0.0);

       multiline(5,
                x0, y4, 0.0,
                x01, y41, (double)l,
                x11, y21, (double)l,
                x1, y2, 0.0,
                x0, y4, 0.0);

       }
     }
   }

%}

END