1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2015, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Guide_multichannel
*
* %I
* Written by: Jan Saroun (saroun@ujf.cas.cz)
* Modified by: Celine Durniak
* Date: 17.3.2022
* Version: 1.3
* Release: McStas
* Origin: Nuclear Physics Institute, CAS, Rez
*
* Multichannel neutron guide with semi-transparent blades.
* Derived from Guide_channeled by Christian Nielsen.
* Allows to simulate bi-spectral extraction optics.
*
* %D
* Models a rectangular guide with equidistant vertical blades of finite thickness.
* The blades material can be either fully absorbing or semi-transparent. The absorption
* coefficient is wavelength dependent according to the semi-empirical model used
* e.g. in J. Baker et al., J. Appl. Cryst. 41 (2008) 1003 or
* A. Freund, Nucl. Instr. Meth. A 213 (1983) 495.
* Data are provided for Si and Al2O3.
*
* All walls are flat, curvature is not implemented (may be added as a future upgrade)
* Tapering is possible by setting different entry ad exit dimensions.
* Different guide coating can be set for vertical and horizontal mirrors.
* For transparent walls, neutrons are alloed to migrate between channels and to
* propagate through the blades.
*
* The model is almost equivalent to the GUIDE component in SIMRES (http://neutron.ujf.cas.cz/restrax)
* when used with zero curvature and type set to "guide or bender".
* The features from SIMRES not included in this McSas model are:
* - has a more conservative model for absorption in blades: events above r(m<mc) are automatically ABSORBED.
* - defines waviness
* - works with bent geometry
* - works with gravity
* - allows for 2D grid of blades
*
* bug fix 24/3/2017: incorrect handling of transition into blades = no transmission
*
* %P
* INPUT PARAMETERS:
*
* w1: (m) Width at the guide entry
* h1: (m) Height at the guide entry
* w2: (m) Width at the guide exit
* h2: (m) Height at the guide exit
* l: (m) Length of guide
* dlam: (m) Thickness of lamellae
* nslit: (1) Number of channels in the guide (>= 1)
* R0: (1) Low-angle reflectivity
* Qc: (AA-1) Critical scattering vector
* alpha: (AA) Slope of reflectivity
* m: (1) m-value of material. Zero means completely absorbing.
* W: (AA-1) Width of supermirror cut-off for all mirrors
*
* Qcx: (AA-1) Critical scattering vector for left and right vertical
* mirrors in each channel
* Qcy: (AA-1) Critical scattering vector for top and bottom mirrors
* alphax: (AA) Slope of reflectivity for left and right vertical
* mirrors in each channel
* alphay: (AA) Slope of reflectivity for top and bottom mirrors
* mx: (1) m-value of material for left and right vertical mirrors
* in each channel. Zero means completely absorbing.
* my: (1) m-value of material for top and bottom mirrors. Zero
* means completely absorbing.
* mater: (string) "Si", "Al2O3", or "absorb" (default)
*
* %D
*
* Example: Bi-specctral extraction:
* Guide_multichannel (
* w1 = 0.058, h1=0.0528 , w2=0.063, h2=0.0555, l=0.5,
* nslit=8, dlam=0.001, mx=4, my=4, mater="Si"
* ) AT (0.0034, 0, 4.15) RELATIVE SOURCE
* ROTATED (0.0, -0.78, 0.0) RELATIVE SOURCE
*
* %E
*******************************************************************************/
DEFINE COMPONENT Guide_multichannel
SETTING PARAMETERS (w1, h1, w2=0, h2=0, l,
R0=0.995, Qc=0, alpha=0, m=0, int nslit=1, dlam=0.0005,
Qcx=0.0218, Qcy=0.0218, alphax=4.38, alphay=4.38, W=0.003, mx=1, my=1, string mater="absorb")
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE %{
%include "ref-lib"
/* return reflectivity parameters as an array*/
void getRefPar(double par[], double R0, double Qc, double alpha, double m, double W) {
par[0]=R0;
par[1]=Qc;
par[2]=alpha;
par[3]=m;
par[4]=W;
}
%}
DECLARE
%{
/*
Absorption formula:
mu = A*lambda + s_free*(1 - exp(-B/lambda^2 - D/lambda^4)
following coefficients in mu_par array correspond to { s_free, A, B, D }
Units:
s_free [1/cm]
A [1/cm/A]
B [A^2]
D [A^4]
*/
/* Si at room temperature */
//const double mu_Si[4];
/* Al2O3 (sapphire) at room temperature */
//const double mu_Al2O3[4];
/* default - high absorption */
//const double mu_default[4];
double w1c;
double w2c;
double ww;
double hh;
double whalf;
double hhalf;
double winner;
double dah;
double ah;
double av;
int opaque;
double mu_par[4];
double v2lam;
double refpar_x[5];
double refpar_y[5];
%}
INITIALIZE
%{
static const double mu_Si[4] = {0.1018, 6.054e-3, 0.38, 0.0};
static const double mu_Al2O3[4] = {0.2120, 8.11e-3, 0.16, 0.129};
static const double mu_default[4] = {100.0, 100.0, 100.0, 100.0};
getRefPar(refpar_x,R0, Qcx, alphax, mx, W);
getRefPar(refpar_y,R0, Qcy, alphay, my, W);
/* lambda = v2lam/v */
v2lam=2*PI/V2K;
/* Set absorption coefficient */
memcpy(mu_par, mu_default, sizeof(mu_par));
opaque=1;
if (nslit>1) {
if (strcmp(mater,"Si") ==0) {
memcpy(mu_par, mu_Si, sizeof(mu_par));
opaque=0;
} else if (strcmp(mater,"Al2O3") ==0) {
memcpy(mu_par, mu_Al2O3, sizeof(mu_par));
opaque=0;
}
}
if (opaque) {
printf("%s: Absorbing blades.\n",NAME_CURRENT_COMP);
} else {
ww = mu_par[1]*2 + mu_par[0]*(1.0 - exp(-mu_par[2]/4 - mu_par[3]/16));
printf("%s: Translucent blades, %s, mu(2A) = %g [1/cm].\n",NAME_CURRENT_COMP,mater,ww);
}
printf("%s: nslit=%d\n",NAME_CURRENT_COMP,nslit);
/* process input data */
if (!w2) w2=w1;
if (!h2) h2=h1;
if (nslit <= 0)
{ fprintf(stderr,"Guide_multichannel: %s: nslit must be positive\n", NAME_CURRENT_COMP);
exit(-1); }
if (m) { mx=my=m; }
if (Qc) { Qcx=Qcy=Qc; }
if (alpha) { alphax=alphay=alpha; }
w1c = (w1 + dlam)/(double)nslit;
w2c = (w2 + dlam)/(double)nslit;
ww = .5*(w2 - w1);
hh = .5*(h2 - h1);
winner = w1c - dlam; // width of one channel at the entry
whalf = .5*winner;
hhalf = .5*h1;
av = hh/l; // angular deflection of top(+)/bottom(-) walls
ah = ww/l; // angular deflection of left(+)/right(-) walls
dah = (w2-w1)/(l*nslit); // angular step between blades
if (dlam*nslit >= w1+dlam) exit(fprintf(stderr, "Guide_multichannel: %s: No space left for channels, "
"blades are too thick, (dlam*nslit >= w1+dlam).\n", NAME_CURRENT_COMP));
if (mcgravitation) fprintf(stderr,"WARNING: Guide_multichannel: %s: "
"This component produces wrong results with gravitation.\n",NAME_CURRENT_COMP);
%}
TRACE
%{
double tt,tout;
double a1,b1,a2,b2; // side wall equation (right, left)
double vdotn, mu, q, edge,N0,v0, p0, p1, lam0, lam2, lam4;
double ref,rtmp;
int ic; // which wall hit ?
int is; // channel index
int inblade; // flags
int i,nloop;
double tc[4]; // Intersection times
double N[3]; // surface normal
/* Propagate neutron to the guide entrance. */
PROP_Z0;
/* Call Scatter at the guide entry, needed for GROUP construction. */
SCATTER;
/* apply front mask */
if(fabs(x) >= w1/2.0 || fabs(y) >= hhalf)
ABSORB;
/* slit index
Each slit includes the empty chanel of width = winner + the wall on the left/top side
*/
is=floor((x+0.5*w1)/w1c);
/* right edge of the channel */
edge = is*w1c - 0.5*w1;
inblade=(x-edge>winner ? 1:0); // is inside the blade ?
if (inblade && opaque) {
ABSORB;
}
/* wall equation: x = a + b*z */
if (inblade) {
a1=edge+winner; b1=(is+1)*dah-ah; // right wall
a2=a1+dlam;b2=b1; // left wall
} else {
a1=edge; b1=is*dah-ah; // right wall
a2=edge+winner; b2=b1+dah; // left wall
}
v0=sqrt(vx*vx+vy*vy+vz*vz);
nloop=0;
if (opaque) {
mu = 1e10;
} else {
lam0=v2lam/v0;
lam2=lam0*lam0;
lam4=lam2*lam2;
mu = mu_par[1]*lam0 + mu_par[0]*(1.0 - exp( - mu_par[2]/lam2 - mu_par[3]/lam4));
mu *= 100.0; // convert to m^-1
}
for(;;)
{
/* kill events with too many bounces */
if (nloop>100) {
/* stopped on loop limit */
ABSORB;
}
/* Compute intersection times. */
tout = (l - z)/vz;
tc[0] = (a1 - x + b1*z)/(vx - b1*vz); // right
tc[1] = (a2 - x + b2*z)/(vx - b2*vz); // left
tc[2] = (-hhalf - y - av*z)/(vy + av*vz); // bottom
tc[3] = ( hhalf - y + av*z)/(vy - av*vz); // top
tt=tout;
ic=-1;
for (i=0;i<4;i++) {
if ((tc[i]>0.0) && (tc[i]< tt)) {
tt=tc[i];
ic=i;
}
}
/* Neutron left guide. */
if(ic < 0) {
PROP_DT(tt);
if (inblade && (! opaque))
p *= exp(-mu*v0*tt); // transmission probability
break;
}
/* handle interactions with walls */
switch(ic)
{
case 0: /* Right vertical mirror */
N[0]=1.0; N[1]=0.0; N[2]=-b1;
N0=sqrt(1.0+b1*b1);
break;
case 1: /* Left vertical mirror */
N[0]=-1.0; N[1]=0.0; N[2]=b2;
N0=sqrt(1.0+b2*b2);
break;
case 2: /* Lower horizontal mirror */
N[0]=0.0; N[1]=1.0; N[2]=av;
N0=sqrt(1.0+av*av);
break;
case 3: /* Upper horizontal mirror */
N[0]=0.0; N[1]=-1.0; N[2]=av;
N0=sqrt(1.0+av*av);
break;
}
/* scattering vector */
vdotn = N[0]*vx + N[1]*vy + N[2]*vz;
q=-2.0*vdotn/N0;
if (q<=0.0) {
/* stopped on q<0, this should not happen */
ABSORB;
}
/* compute reflectivity. */
double ref=0;
if ((ic <= 1 && mx == 0) || (ic >= 2 && my == 0))
{
if (opaque) {
/* stopped, no way through blind & opaque mirrors*/
ABSORB;
} else ref=0;
} else {
/*
if (ic<=1) {
double par[] = {R0, Qcx, alphax, mx, W};
} else {
double par[] = {R0, Qcy, alphay, my, W};
}
StdReflecFunc(q*V2Q, par, &ref);
*/
if (ic<=1) {
StdReflecFunc(q*V2Q, refpar_x, &ref);
} else {
StdReflecFunc(q*V2Q, refpar_y, &ref);
}
}
if (inblade) {
// cumulative probabilities
p0 = 1.0-exp(-mu*v0*tt); // absorption
p1 = 1.0 - (1.0-p0)*ref; // absorption or transmission
} else {
p0=0.0;
p1=1.0 - ref;
// no entry into lamella below reflectivity edge ...
if ((ic<=1) && (q*V2Q<refpar_x[1]*refpar_x[3])) {
p0=1.0-ref;
p1=p0;
}
}
/* play the rullette */
rtmp = rand01();
/* absorb */
if (rtmp<p0) {
/* stopped, absorption in the blade */
ABSORB;
/* transmit */
} else if (rtmp<p1) {
/* into blade */
if (! inblade) {
// no transport into the outer walls or opaque material
/* bug fix 24/3/2017
if ( opaque || (ic>=2) || (is<=0) || (is>=nslit-1)) {
ABSORB;
}
*/
if ( opaque || (ic>=2)) {
// ABSORB, no way through bottom/top walls
ABSORB;
}
if (((ic==0) && (is==0)) || ((ic==nslit-1) && (is==1)) ) {
// ABSORB, no way through right/left walls
ABSORB;
}
PROP_DT(tt+1.0e-9); // add small shift to avoid num. prec. errors
if (ic==0) {
is -= 1;
edge = is*w1c - 0.5*w1;
}
inblade=1;
/* new wall equation */
a1=edge+winner; b1=(is+1)*dah-ah; // right wall
a2=a1+dlam;b2=b1; // left wall
SCATTER;
/* into channel */
} else {
PROP_DT(tt+1.0e-9); // add small shift to avoid num. prec. errors
if (ic==1) {
is += 1;
edge = is*w1c - 0.5*w1;
}
inblade=0;
/* new wall equation */
a1=edge; b1=is*dah-ah; // right wall
a2=edge+winner; b2=b1+dah; // left wall
SCATTER;
}
/* reflect */
} else {
PROP_DT(tt); // move to the reflection point
vx += N[0]*q;
vy += N[1]*q;
vz += N[2]*q;
PROP_DT(1.0e-9); // add small shift away from the surface to avoid num. prec. errors
nloop++; // count reflections
SCATTER;
}
} /* end for */
/* renormalize to avoid accumulation of num. precision errors*/
if (nloop>0) {
rtmp=v0/sqrt(vx*vx+vy*vy+vz*vz);
vx = vx * rtmp;
vy = vy * rtmp;
vz = vz * rtmp;
}
%}
MCDISPLAY
%{
int i;
magnify("xy");
for(i = 0; i < nslit; i++)
{
multiline(5,
i*w1c - w1/2.0, -h1/2.0, 0.0,
i*w2c - w2/2.0, -h2/2.0, (double)l,
i*w2c - w2/2.0, h2/2.0, (double)l,
i*w1c - w1/2.0, h1/2.0, 0.0,
i*w1c - w1/2.0, -h1/2.0, 0.0);
multiline(5,
(i+1)*w1c - dlam - w1/2.0, -h1/2.0, 0.0,
(i+1)*w2c - dlam - w2/2.0, -h2/2.0, (double)l,
(i+1)*w2c - dlam - w2/2.0, h2/2.0, (double)l,
(i+1)*w1c - dlam - w1/2.0, h1/2.0, 0.0,
(i+1)*w1c - dlam - w1/2.0, -h1/2.0, 0.0);
}
line(-w1/2.0, -h1/2.0, 0.0, w1/2.0, -h1/2.0, 0.0);
line(-w2/2.0, -h2/2.0, (double)l, w2/2.0, -h2/2.0, (double)l);
%}
END
|