1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2009, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Lens
*
* %Identification
*
* Written by: C. Monzat/E. Farhi/S. Desert/G. Euzen
* Date: 2009
* Origin: ILL/LLB
*
* Refractive lens with absorption, incoherent scattering and surface imperfection.
*
* %Description
* Refractive Lens with absorption, incoherent scattering and surface imperfection.
* Geometry may be:
* spherical (use r1 and r2 to specify radius of curvature),
* planar (use phiy1 and phiy2 to specify rotation angle of plane w.r.t beam)
* parabolic (use focus1 and focus2 as optical focal length).
*
* Optionally, you can specify the 'geometry' parameter as a OFF/PLY file name.
* The complex geometry option handles any closed non-convex polyhedra.
* It computes the intersection points of the neutron ray with the object
* transparently, so that it can be used like a regular sample object.
* It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
* Such files may be generated from XYZ data using:
* qhull < coordinates.xyz Qx Qv Tv o > geomview.off
* or
* powercrust coordinates.xyz
* and viewed with geomview or java -jar jroff.jar (see below).
*
* The lens cross-section is seen as a 2*radius disk from the beam Z axis, except
* when a 'geometry' file is given.
* Usually, you should stack more than one of these to get a significant effect
* on the neutron beam, so-called 'compound refractive lens'.
*
* The focal length for N lenses with focal 'f' is f/N, where f=R/(1-n)
* and R = r/2 for a spherical lens with curvature radius 'r'
* R = focus for a parabolic lens with focal of the parabola
* and n = sqrt(1-(lambda*lambda*rho*bc/PI)) with
* bc = sqrt(fabs(sigma_coh)*100/4/PI)*1e-5
* rho = density*6.02214179*1e23*1e-24/weight
*
* Common materials: Should have high coherent, and low incoherent and absorption cross sections
* Be: density=1.85, weight=9.0121, sigma_coh=7.63, sigma_inc=0.0018,sigma_abs=0.0076
* Pb: density=11.115,weight=207.2, sigma_coh=11.115,sigma_inc=0.003, sigma_abs=0.171
* Pb206: sigma_coh=10.68, sigma_inc=0 , sigma_abs=0.03
* Pb208: sigma_coh=11.34, sigma_inc=0 , sigma_abs=0.00048
* Zr: density=6.52, weight=91.224, sigma_coh=6.44, sigma_inc=0.02, sigma_abs=0.185
* Zr90: sigma_coh=5.1, sigma_inc=0 , sigma_abs=0.011
* Zr94: sigma_coh=8.4, sigma_inc=0 , sigma_abs=0.05
* Bi: density=9.78, weight=208.98, sigma_coh=9.148, sigma_inc=0.0084,sigma_abs=0.0338
* Mg: density=1.738, weight=24.3, sigma_coh=3.631, sigma_inc=0.08, sigma_abs=0.063
* MgF2: density=3.148, weight=62.3018,sigma_coh=11.74, sigma_inc=0.0816,sigma_abs=0.0822
* diamond: density=3.52, weight=12.01, sigma_coh=5.551, sigma_inc=0.001, sigma_abs=0.0035
* Quartz/silica: density=2.53, weight=60.08, sigma_coh=10.625,sigma_inc=0.0056,sigma_abs=0.1714
* Si: density=2.329, weight=28.0855,sigma_coh=2.1633,sigma_inc=0.004, sigma_abs=0.171
* Al: density=2.7, weight=26.98, sigma_coh=1.495, sigma_inc=0.0082,sigma_abs=0.231
* perfluoropolymer(PTFE/Teflon/CF2):
* density=2.2, weight=50.007, sigma_coh=13.584,sigma_inc=0.0026,sigma_abs=0.0227
* Organic molecules with C,O,H,F
*
* Example: Lens(r1=0.025,r2=0.025, thickness=0.001,radius=0.0150)
*
* %BUGS
* parabolic shape is not fully validated yet, but should do still...
*
* %Parameters
* INPUT PARAMETERS:
* r1: [m] radius of the first circle describing the lens. r>0 means concave face, r<0 means convex, r=0 means plane
* r2: [m] radius of the second circle describing the lens r>0 means concave face, r<0 means convex, r=0 means plane
* focus1: [m] focal of the first parabola describing the lens
* focus2: [m] focal of the second parabola describing the lens
* phiy1: [deg] angle of plane1 (r1=0) around y vertical axis
* phiy2: [deg] angle of plane2 (r2=0) around y vertical axis
* thickness: [m] thickness of the lens between its two surfaces
* radius: [m] radius of the lens section, e.g. beam size.
* density: [g/cm3] density of the material for the lens
* weight: [g/mol] molar mass of the material
* focus_aw: [deg] vertical angle to forward focus after scattering
* focus_ah: [deg] horizontal angle to forward focus after scattering
* sigma_coh: [barn] coherent cross section
* sigma_inc: [barn] incoherent cross section
* sigma_abs: [barn] thermal absorption cross section
* p_interact: [1] MC Probability for scattering the ray; otherwise transmit
* RMS: [Angs] root mean square roughness of the surface
* geometry: [str] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust
*
* %L
* M. L. Goldberger et al, Phys. Rev. 71, 294 - 310 (1947)
* %L
* Sears V.F. Neutron optics. An introduction to the theory of neutron optical phenomena and their applications. Oxford University Press, 1989.
* %L
* H. Park et al. Measured operationnal neutron energies of compound refractive lenses. Nuclear Instruments and Methods B, 251:507-511, 2006.
* %L
* J. Feinstein and R. H. Pantell. Characteristics of the thick, compound refractive lens. Applied Optics, 42 No. 4:719-723, 2001.
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a href="http://qhull.org">qhull</a>
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
* %E
*******************************************************************************/
DEFINE COMPONENT Lens
SETTING PARAMETERS (r1=0,r2=0,focus1=0,focus2=0,phiy1=0,phiy2=0,
thickness=0.001,radius=0.015,
sigma_coh=11.74,sigma_inc=0.0816,sigma_abs=0.0822,
density=3.148,weight=62.3018,
p_interact=0.1,focus_aw=10,focus_ah=10,RMS=0, string geometry=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
/* support for OFF/PLY geometry */
%include "read_table-lib"
%include "interoff-lib"
/* Lens_roughness: function to rotate normal vector around axis for roughness
* with specified tilt angle (deg)
* RETURNS: rotated nx,ny,nz coordinates
*/
#pragma acc routine seq
void Lens_roughness(double *nx, double *ny, double *nz, double tilt
#ifdef OPENACC
, _class_particle* _particle
#endif
)
{
double nt_x, nt_y, nt_z; /* transverse vector */
double n1_x, n1_y, n1_z; /* normal vector (tmp) */
/* normal vector n_z = [ 0,1,0], n_t = n x n_z; */
vec_prod(nt_x,nt_y,nt_z, *nx,*ny,*nz, 0,1,0);
/* rotate n with angle wav_z around n_t -> n1 */
tilt *= DEG2RAD/(sqrt(8*log(2)))*randnorm();
rotate(n1_x,n1_y,n1_z, *nx,*ny,*nz, tilt, nt_x,nt_y,nt_z);
/* rotate n1 with angle phi around n -> nt */
rotate(nt_x,nt_y,nt_z, n1_x,n1_y,n1_z, 2*PI*rand01(), *nx,*ny,*nz);
*nx=nt_x;
*ny=nt_y;
*nz=nt_z;
}
/* parabola_intersect: Calculate intersection between a line and a parabola with
* axis along z, focal length f, centered at (0,0,0)
* RETURNS 0 when no intersection is found
* or 1 in case of intersection with resulting times t0 and t1 */
#pragma acc routine seq
int parabola_intersect(double *t0, double *t1, double x, double y, double z,
double vx, double vy, double vz, double f)
{
/* equation of line: (x,y,z) = (vx,vy,vz)*t+(x,y,z)_0 */
/* equation of parabola: z = (x^2+y^2)/4/f
that is: 4*f*(vz*t+z0) = (vx*t+x0)^2 + (vy*t+y0)^2 */
double A = vx*vx+vy*vy;
double B = 2*vx*x+2*vy*y-4*vz*f;
double C = x*x+y*y-4*f*z;
return(solve_2nd_order(t0, t1, A,B,C));
}
/* Lens_intersect: function to compute intersection with lens surface
* of section 2*radius (beam size)
* which can be
* type="spherical" (arg=curvature radius),
* type="parabolic" (arg=focus) or
* type="planar" (arg=phi around y).
* The Surface intersection along the Z axis is 'shift' (e.g. +/-thickness/2)
* RETURNS: intersection time to surface, or negative for no intersection
* neutron must then be propagated on the surface with PROP_DT,
* and checked for actual intersection.
*/
#pragma acc routine seq
double Lens_intersect(double x,double y,double z,
double vx,double vy,double vz,
double shift, double radius,
int type, double arg)
{
double t0, t1;
if (!vz || !type || !radius) return -1;
if (type==1 && arg) { /* spherical */
if (sphere_intersect(&t0,&t1, x,y,z+shift+arg, vx,vy,vz, fabs(arg))) {
return ( arg > 0 ? t1 : t0 ); /* concave : convex surface */
} else
return(-1);
} else if (type==2 && arg) { /* parabolic */
if (parabola_intersect(&t0, &t1, x,y,z+shift, vx,vy,vz, arg)) {
if (t0 < 0 && 0 < t1) return(t1);
if (t1 < 0 && 0 < t0) return(t0);
return(t1 < t0 ? t1 : t0);
} else
return(-1);
/* end parabola */
} else if (type==3) { /* planar */
if (plane_intersect(&t0, x,y,z+shift, vx,vy,vz, -sin(arg),0,-cos(arg), 0,0,0)>0)
return(t0);
else
return(-1);
} else /* unsupported geometry */
return(-1);
}
%}
DECLARE
%{
double rho;
double bc;
double my_s;
double my_a_v;
double mean_n;
double events;
off_struct offdata;
%}
INITIALIZE
%{
/* density: Number of atoms by AA^3, pow(10,-24) stands for conversion from cm^3 to AA^3 */
if (density<=0 || weight<=0)
exit(printf("Lens: %s: FATAL: invalid material density or molar weight: density=%g weight=%g\n",
NAME_CURRENT_COMP, density, weight));
rho= density*6.02214179*1e23*1e-24/weight;
if (sigma_coh==0)
exit(printf("Lens: %s: FATAL: invalid material coherent cross section: sigma_coh=%g\n",
NAME_CURRENT_COMP, sigma_coh));
bc=sqrt(fabs(sigma_coh)*100/4/PI)*1e-5; /* bound coherent cross section */
if (sigma_coh<0) bc *= -1;
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
#ifndef USE_OFF
fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
exit(-1);
#else
/* init the OFF/PLY without centering and scaling */
if (!off_init(geometry, 0, 0, 0, 1, &offdata))
exit(printf("Lens: %s: FATAL: could not initialize geometry file %s [OFF/PLY]\n",
NAME_CURRENT_COMP, geometry));
#endif
}
phiy1 *= DEG2RAD; /* planes orientation */
phiy2 *= DEG2RAD;
focus_aw *= DEG2RAD;
focus_ah *= DEG2RAD;
my_s = rho * 100 *(sigma_inc+sigma_coh);
my_a_v= rho * 100 * sigma_abs;
%}
TRACE
%{
double n; /* refractive index */
double v, lambda; /* neutron speed and wavelength */
double dt; /* time to intersection */
double theta_RMS;
double nx=0, ny=0, nz=0; /* normal vector to surface */
double ax, ay, az; /* temporary vector for surface refraction */
double alpha1, beta1, theta1, theta2; /* angles for refraction computation */
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
/* iterate two faces intersection until no more is possible */
do {
/* ======================== First face of the lens ========================== */
/* determine intersection time */
nx=ny=nz=0;
#ifdef USE_OFF
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
double t1=0,t0=0;
Coords n, n0, n1;
int intersect=off_intersect (&t0, &t1, &n0, &n1, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
if (!intersect) dt=-1;
else if (t0 < 0 && 0 < t1) { dt = t1; n=n1; }
else if (t1 < 0 && 0 < t0) { dt = t0; n=n0; }
else {
if (t1 < t0) { dt=t1; n=n1; }
else { dt=t0; n=n0; }
}
coords_get(n, &nx, &ny, &nz);
} else
#endif
if (r1 && !focus1) {
dt = Lens_intersect(x,y,z, vx, vy, vz, thickness/2, radius, 1, r1);
} else if (!r1 && focus1){
if (focus1>0){
dt = Lens_intersect(x,y,z, vx, vy, vz, thickness/2, radius, 2, -focus1);
}else{
dt = Lens_intersect(x,y,z, vx, vy, vz, thickness/2 + radius*radius/(4*fabs(focus1)) , radius, 2, -focus1);
}
} else {
dt = Lens_intersect(x,y,z, vx, vy, vz, thickness/2, radius, 3, phiy1);
}
if (dt <= 0) break; /* no intersection: exit from main loop */
/* propagate to surface (1) */
PROP_DT(dt);
/* check for lens cross section (radius) */
if (radius && x*x+y*y > radius*radius) break; /* outside from cross section: exit from main loop */
SCATTER;
v=sqrt(vx*vx+vy*vy+vz*vz);
if (v) lambda=3956.0032/v; else ABSORB;
/* compute refractive index */
/* without inc nor abs: n = sqrt(1-(lambda*lambda*rho*bc/PI)); */
/* M. L. Goldberger et al, Phys. Rev. 71, 294 - 310 (1947) */
/* alpha1 = (sigma_inc+sigma_abs*2200/v)/2/lambda;
n = 1-lambda*lambda*rho/2/PI*sqrt(bc*bc-alpha1*alpha1); */
n = sqrt(1-(lambda*lambda*rho*bc/PI));
#pragma acc atomic
mean_n += n*p;
#pragma acc atomic
events += p;
theta_RMS=atan(2*RMS/lambda); /* cone angle from RMS roughness */
/* compute normal vector (1) when not given by OFF/PLY */
if (!nx && !ny && !nz) {
dt = 0;
if (r1 && !focus1) {
double sign=r1/fabs(r1);
nx=-sign*x;
ny=-sign*y;
nz=sign*(-z-thickness/2-r1);
} else if (!r1 && focus1) {
nx=-x/2/focus1;
ny=-y/2/focus1;
nz=-1;
} else {
nx=-sin(phiy1);
ny=0;
nz=-cos(phiy1);
}
}
/* tilt normal vector for roughness, in cone theta_RMS */
if (RMS>0) Lens_roughness(&nx, &ny, &nz, theta_RMS
#ifdef OPENACC
, _particle
#endif
);
/* compute incoming angles w.r.t surface */
NORM(nx,ny,nz);
vec_prod(ax,ay,az,nx,ny,nz,-vx,-vy,-vz);
/* if n and v are parallel - no refraction.*/
if (ax!=0 || ay!=0 || az!=0){
theta1 = atan2(sqrt(ax*ax+ay*ay+az*az),scalar_prod(nx,ny,nz,-vx,-vy,-vz));
/* Fresnel formula for refraction */
theta2 = asin(sin(theta1)/n);
/* compute new velocity after refraction */
alpha1 = (sin(theta2))/(sin(theta1));
beta1 = (alpha1*v*cos(theta1))-(v*cos(theta2));
vx = beta1*nx + alpha1*vx;
vy = beta1*ny + alpha1*vy;
vz = beta1*nz + alpha1*vz;
}
/* ======================== Second face of the lens ========================= */
/* determine intersection time to go to second surface */
nx=ny=nz=0;
#ifdef USE_OFF
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
double t1=0,t0=0;
Coords n, n0, n1;
int intersect=off_intersect (&t0, &t1, &n0, &n1, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
if (!intersect) dt=-1;
else if (t0 < 0 && 0 < t1) { dt = t1; n=n1; }
else if (t1 < 0 && 0 < t0) { dt = t0; n=n0; }
else {
if (t1 < t0) { dt=t1; n=n1; }
else { dt=t0; n=n0; }
}
coords_get(n, &nx, &ny, &nz);
} else
#endif
if (r2 && !focus2)
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2, radius, 1, -r2);
else if (!r2 && focus2){
if (focus2>0){
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2, radius, 2, focus2);
}else{
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2 - radius*radius/(4*fabs(focus2)) , radius, 2, focus2);
}
}else{
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2, radius, 3, phiy2);
}
if (dt <= 0) break; /* no intersection: exit from main loop */
/* =============== Absorption and scattering between the two faces =========== */
double my_a,my_t,p_trans,p_scatt,mc_trans,mc_scatt,ws,d_path;
double p_mult=1;
int flag=0;
double l_i=0;
double solid_angle=0;
my_a = my_a_v*(2200/v);
my_t = my_a + my_s;
ws = my_s/my_t; /* (inc+coh)/(inc+coh+abs) */
d_path = v * dt;
/* Proba of transmission along length d_path */
p_trans = exp(-my_t*d_path);
p_scatt = 1 - p_trans;
flag = 0; /* flag used for propagation to exit point before ending */
/* are we next to the exit ? probably no scattering (avoid rounding errors) */
if (my_s*d_path <= 4e-7) {
flag = 1; /* No interaction before the exit */
}
/* force a given fraction of the beam to scatter */
if (p_interact>0 && p_interact<=1) {
/* we force a portion of the beam to interact */
/* This is used to improve statistics on single scattering (and multiple) */
mc_trans = 1-p_interact;
} else {
mc_trans = p_trans; /* 1 - p_scatt */
}
mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
if (mc_scatt <= 0 || mc_scatt>1) flag=1;
/* MC choice: Interaction or transmission ? */
if (!flag && mc_scatt > 0 && (mc_scatt >= 1 || (rand01()) < mc_scatt)) { /* Interaction neutron/sample */
p_mult *= ws; /* Update weight ; account for absorption and retain scattered fraction */
/* we have chosen portion mc_scatt of beam instead of p_scatt, so we compensate */
p_mult *= fabs(p_scatt/mc_scatt); /* lower than 1 */
} else {
flag = 1; /* Transmission : no interaction neutron/sample */
p_mult *= fabs(p_trans/mc_trans); /* attenuate beam by portion which is scattered (and left along) */
}
if (flag) { /* propagate directly to secound surface */
if (!isnan(p_mult)) {
p *= p_mult; /* apply absorption correction */
} else {
ABSORB;
}
}
else
{
double a;
if (my_t*d_path < 1e-6){
/* For very weak scattering, use simple uniform sampling of scattering
point to avoid rounding errors. */
dt = rand0max(d_path); /* length */
} else {
a = rand0max((1 - exp(-my_t*d_path)));
dt = -log(1 - a) / my_t; /* length */
}
l_i = dt;/* Penetration in sample: scattering+abs */
dt /= v; /* Time from present position to scattering point */
PROP_DT(dt); /* Point of scattering */
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,0,0,1, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
NORM(vx, vy, vz);
vx*=v;
vy*=v;
vz*=v;
p_mult *= solid_angle/4/PI;
if (!isnan(p_mult)) {
p *= p_mult;
} else {
ABSORB;
}
SCATTER;
/* recompute new intersection time to go to second surface (velocity changed during scattering event) */
nx=ny=nz=0;
#ifdef USE_OFF
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
double t1=0,t0=0;
Coords n, n0, n1;
int intersect=off_intersect (&t0, &t1, &n0, &n1, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
if (!intersect) dt=-1;
else if (t0 < 0 && 0 < t1) { dt = t1; n=n1; }
else if (t1 < 0 && 0 < t0) { dt = t0; n=n0; }
else {
if (t1 < t0) { dt=t1; n=n1; }
else { dt=t0; n=n0; }
}
coords_get(n, &nx, &ny, &nz);
} else
#endif
if (r2 && !focus2)
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2, radius, 1, -r2);
else if (!r2 && focus2)
if (focus2>0){
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2, radius, 2, focus2);
}else{
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2 - radius*radius/(4*fabs(focus2)) , radius, 2, focus2);
}
else
dt = Lens_intersect(x,y,z, vx, vy, vz, -thickness/2, radius, 3, phiy2);
if (dt <= 0) break; /* no intersection: exit from main loop */
} /* end scattering handling in material*/
/* propagate to surface */
PROP_DT(dt);
/* check for lens cross section (radius) */
if (radius && x*x+y*y > radius*radius) break; /* outside from cross section: exit from main loop */
SCATTER;
v=sqrt(vx*vx+vy*vy+vz*vz);
/* compute normal vector (2) when not given by OFF/PLY */
if (!nx && !ny && !nz) {
dt = 0;
if (r2 && !focus2) {
double sign=r2/fabs(r2);
nx=sign*x;
ny=sign*y;
nz=sign*(z-thickness/2-r2);
} else if (!r2 && focus2){
nx=x/2/focus2;
ny=y/2/focus2;
nz=-1;
} else {
nx=-sin(phiy2);
ny=0;
nz=-cos(phiy2);
}
}
/* tilt normal vector for roughness, in cone theta_RMS */
if (RMS>0) Lens_roughness(&nx, &ny, &nz, theta_RMS
#ifdef OPENACC
, _particle
#endif
);
/* compute incoming angles w.r.t surface */
NORM(nx,ny,nz);
vec_prod(ax,ay,az,nx,ny,nz,-vx,-vy,-vz);
/* if n and v are parallel - no refraction.*/
if (ax!=0 || ay!=0 || az!=0){
theta1 = atan2(sqrt(ax*ax+ay*ay+az*az),scalar_prod(nx,ny,nz,-vx,-vy,-vz));
/* Fresnel formula for refraction */
theta2=asin(sin(theta1)*n);
/* compute new velocity after refraction */
alpha1 = (sin(theta2))/(sin(theta1));
beta1 = (alpha1*v*cos(theta1))-(v*cos(theta2));
vx = beta1*nx + alpha1*vx;
vy = beta1*ny + alpha1*vy;
vz = beta1*nz + alpha1*vz;
}
} while (dt>0); /* loop until no more intersection */
%}
FINALLY %{
/* compute focal length */
double f1=0, f2=0, f=0;
double n = mean_n / events;
if (n != 1) {
if (r1 && !focus1) f1 = r1/2/(1-n);
else if (!r1 && focus1) f1 = focus1/(1-n);
if (r2 && !focus2) f2 = r2/2/(1-n);
else if (!r2 && focus2) f2 = focus2/(1-n);
}
if (f1) f+= 1/f1;
if (f2) f+= 1/f2;
if (f) {
f = 1/f;
printf("Lens: %s: focal length f=%g [m]. Focal length for N lenses is f/N.\n", NAME_CURRENT_COMP, f);
}
%}
MCDISPLAY
%{
magnify("xy");
double theta1,theta00=0,theta01=0,eps,eps2,theta_line,distance,height,height2,dist_parab1,dist_parab2;
height=radius/2;
height2=radius/2;
dist_parab1=0.0;
dist_parab2=0.0;
/* draw circles to describe the 2 surfaces */
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) { /* OFF file */
off_display(offdata);
}
else {
if (r1 && !focus1) { /* sphere1 */
theta00=asin(fabs((radius/2)/r1));
if (r1<0 && r2<=0 && (-r1+r1*cos(theta00)>thickness/2) ){
theta00=acos((fabs(r1)-thickness/2)/fabs(r1));
height=fabs(r1)*sin(theta00);
}
theta1=-theta00;
eps=theta00/4;
eps2=2*PI/4;
while (theta1<0) {
circle("xy",0,0,-thickness/2-r1+r1*cos(theta1),fabs(r1)*sin(theta1));
theta1+=eps;
theta_line=0;
while (theta_line<2*PI){
line(fabs(r1)*sin(theta1-eps)*cos(theta_line),fabs(r1)*sin(theta1-eps)*sin(theta_line),-thickness/2-r1+r1*cos(theta1-eps),fabs(r1)*sin(theta1)*cos(theta_line),fabs(r1)*sin(theta1)*sin(theta_line),-thickness/2-r1+r1*cos(theta1));
theta_line+=eps2;
}
}
} else if (!r1 && focus1) { /* parabola1 */
if (focus1>0){
dist_parab1=-radius*radius/(4*focus1);
} else {
dist_parab1=0.0;
}
distance=-(radius*radius)/(4*focus1);
eps=-distance/4;
eps2=2*PI/4;
while (focus1*distance<0) {
if (focus1>0){
circle("xy",0,0,distance-thickness/2,sqrt((4*focus1*fabs(distance))));
distance+=eps;
theta_line=0;
while (theta_line<2*PI){
line(sqrt(4*fabs(focus1)*(fabs(distance-eps)))*cos(theta_line),sqrt(4*fabs(focus1)*(fabs(distance-eps)))*sin(theta_line),distance-eps-thickness/2,sqrt(4*fabs(focus1)*fabs(distance))*cos(theta_line),sqrt(4*fabs(focus1)*fabs(distance))*sin(theta_line),distance-thickness/2);
theta_line+=eps2;
}
} else {
theta_line=0;
double rp,rpe,zz;
rp=sqrt(4*fabs(focus1)*fabs(distance));
zz=-thickness/2-radius*radius/(4*fabs(focus1))+distance;
circle("xy",0,0,zz,rp);
distance+=eps;
zz=-thickness/2-radius*radius/(4*fabs(focus1))+distance;
rpe=sqrt(4*fabs(focus1)*fabs(distance));
theta_line=0;
while (theta_line<2*PI){
line(rpe*cos(theta_line),rpe*sin(theta_line),zz, rp*cos(theta_line), rp*sin(theta_line), zz-eps);
theta_line+=eps2;
}
}
}
} else { /* plane 1 */
/* phiy1 is rotation angle around 'y' at z=-thickness. width/height is radius. */
double x1= height2*cos(phiy1);
double y1= height2;
double z1=-height2*sin(phiy1)-thickness/2;
multiline(5, x1, y1, z1,
x1, -y1, z1,
-x1, -y1,-z1,
-x1, y1,-z1,
x1, y1, z1);
}
if (r2 && !focus2) { /* sphere 2 */
theta01=asin(fabs((radius/2)/r2));
if (r1<=0&&r2<0&&(r2-r2*cos(theta01)<-thickness/2)){
theta01=acos((fabs(r2)-thickness/2)/fabs(r2));
height2=fabs(r2)*sin(theta01);
}
theta1=PI-theta01;
eps=(PI-theta1)/4;
eps2=2*PI/4;
while (theta1<PI) {
circle("xy",0,0,thickness/2+r2+r2*cos(theta1),fabs(r2)*sin(theta1));
theta1+=eps;
theta_line=0;
while (theta_line<2*PI) {
line(fabs(r2)*sin(theta1-eps)*cos(theta_line),fabs(r2)*sin(theta1-eps)*sin(theta_line),thickness/2+r2+r2*cos(theta1-eps),fabs(r2)*sin(theta1)*cos(theta_line),fabs(r2)*sin(theta1)*sin(theta_line),thickness/2+r2+r2*cos(theta1));
theta_line+=eps2;
}
}
} else if (!r2 && focus2) { /* parabola 2 */
if (focus2>0){
dist_parab2=radius*radius/(4*focus2);
}else{
dist_parab2=0.0;
}
distance=(radius*radius)/(4*focus2);
height2=sqrt((4*focus2*fabs(distance)));
eps=-distance/4;
eps2=2*PI/4;
while (focus2*distance>0){
if (focus2>0) {
circle("xy",0,0,distance+thickness/2,sqrt((4*fabs(focus2)*fabs(distance))));
distance+=eps;
theta_line=0;
while (theta_line<2*PI) {
line(sqrt(4*focus2*(fabs(distance-eps)))*cos(theta_line),sqrt(4*focus2*(fabs(distance-eps)))*sin(theta_line),distance-eps+thickness/2,sqrt(4*focus2*fabs(distance))*cos(theta_line),sqrt(4*focus2*fabs(distance))*sin(theta_line),distance+thickness/2);
theta_line+=eps2;
}
} else {
double rp,rpe,zz;
rp=sqrt(4*fabs(focus2)*fabs(distance));
zz=thickness/2+(radius*radius)/(4*fabs(focus2))+distance;
circle("xy",0,0,zz,rp);
distance+=eps;
zz=thickness/2+(radius*radius)/(4*fabs(focus2))+distance;
rpe=sqrt(4*fabs(focus2)*fabs(distance));
theta_line=0;
while (theta_line<2*PI){
line(rpe*cos(theta_line),rpe*sin(theta_line),zz, rp*cos(theta_line), rp*sin(theta_line), zz-eps);
theta_line+=eps2;
}
}
}
} else { /* plane 2 */
/* phiy2 is rotation angle around 'y' at z=+thickness. width/height is radius. */
double x1= height2*cos(phiy2);
double y1= height2;
double z1=-height2*sin(phiy2)+thickness/2;
multiline(5, x1, y1, z1,
x1, -y1, z1,
-x1, -y1,-z1,
-x1, y1,-z1,
x1, y1, z1);
}
/* draw outer containing cylinder */
if (r1 && r2 && !focus1 && !focus2){
line(-fabs(r1)*sin(theta00),-fabs(r1)*sin(theta00),-thickness/2-r1+r1*cos(theta00),-fabs(r2)*sin(theta01),fabs(r2)*sin(theta01),thickness/2+r2-r2*cos(theta01));
line(fabs(r1)*sin(theta00),-fabs(r1)*sin(theta00),-thickness/2-r1+r1*cos(theta00),fabs(r2)*sin(theta01),fabs(r1)*sin(theta00),thickness/2+r2-r2*cos(theta01));
line(-fabs(r1)*sin(theta00),-fabs(r1)*sin(theta00),-thickness/2-r1+r1*cos(theta00),fabs(r2)*sin(theta01),-fabs(r1)*sin(theta00),thickness/2+r2-r2*cos(theta01));
line(-fabs(r1)*sin(theta00),fabs(r1)*sin(theta00),-thickness/2-r1+r1*cos(theta00),fabs(r2)*sin(theta01),fabs(r1)*sin(theta00),thickness/2+r2-r2*cos(theta01));
}
else if (r1 && !r2) {
if (!focus2){
line(-height,0,-thickness/2-r1+r1*cos(theta00),-height,0,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(height,0,-thickness/2-r1+r1*cos(theta00),height,0,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
line(0,-height,-thickness/2-r1+r1*cos(theta00),0,-height,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(0,height,-thickness/2-r1+r1*cos(theta00),0,height,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
}
else
{
line(-fabs(r1)*sin(theta00),0,-thickness/2-r1+r1*cos(theta00),-radius/2,0,thickness/2+radius*radius/(16*focus2));
line(fabs(r1)*sin(theta00),0,-thickness/2-r1+r1*cos(theta00),radius/2,0,thickness/2+radius*radius/(16*focus2));
}
}
else if (r2 && !r1) {
if (!focus1){
line(-height2,0,(-thickness/2+radius/2*sin(phiy1))/cos(phiy1),-height2,0,thickness/2+r2-r2*cos(theta01));
line(height2,0,(-thickness/2-radius/2*sin(phiy1))/cos(phiy1),height2,0,thickness/2+r2-r2*cos(theta01));
line(0,height2,(-thickness/2+radius/2*sin(phiy1))/cos(phiy1),0,height2,thickness/2+r2-r2*cos(theta01));
line(0,height2,(-thickness/2-radius/2*sin(phiy1))/cos(phiy1),0,height2,thickness/2+r2-r2*cos(theta01));
}
else
{
line(-height2,0,-thickness/2-radius*radius/(16*focus1),-height2,0,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(height2,0,-thickness/2-radius*radius/(16*focus1),height2,0,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
line(0,height2,-thickness/2-radius*radius/(16*focus1),0,height2,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(0,height2,-thickness/2-radius*radius/(16*focus1),0,height2,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
}
}
else {
if (!focus1 && !focus2){
line(-radius/2,0,(-thickness/2+radius/2*sin(phiy1))/cos(phiy1),-radius/2,0,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(radius/2,0,(-thickness/2-radius/2*sin(phiy1))/cos(phiy1),radius/2,0,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
line(0,-radius/2,(-thickness/2+radius/2*sin(phiy1))/cos(phiy1),0,-radius/2,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(0,radius/2,(-thickness/2-radius/2*sin(phiy1))/cos(phiy1),0,radius/2,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
}
else if (!focus1){
line(-radius/2,0,(-thickness/2+radius/2*sin(phiy1))/cos(phiy1),-radius/2,0,thickness/2+dist_parab2);
line(radius/2,0,(-thickness/2-radius/2*sin(phiy1))/cos(phiy1),radius/2,0,thickness/2+dist_parab2);
line(0,-radius/2,(-thickness/2+radius/2*sin(phiy1))/cos(phiy1),0,-radius/2,thickness/2+dist_parab2);
line(0,radius/2,(-thickness/2-radius/2*sin(phiy1))/cos(phiy1),0,radius/2,thickness/2+dist_parab2);
}
else if (!focus2){
line(-height,0,-thickness/2+dist_parab1,-height,0,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(height,0,-thickness/2+dist_parab1,height,0,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
line(0,-height,-thickness/2+dist_parab1,0,-height,(thickness/2+radius/2*sin(phiy2))/cos(phiy2));
line(0,height,-thickness/2+dist_parab1,0,height,(thickness/2-radius/2*sin(phiy2))/cos(phiy2));
}
else {
line(-radius,0,-thickness/2+dist_parab1,-radius,0,thickness/2+dist_parab2);
line(radius,0,-thickness/2+dist_parab1,radius,0,thickness/2+dist_parab2);
line(0,-radius,-thickness/2+dist_parab1,0,-radius,thickness/2+dist_parab2);
line(0,radius,-thickness/2+dist_parab1,0,radius,thickness/2+dist_parab2);
}
}
} /* end of not a OFF/PLY */
%}
END
|