1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2011, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: curved_mirror
*
* %I
* Written by: Henrik Jacobsen
* Date: April 2012
* Origin: RNBI
*
* Single mirror plate that is curved and fits into an elliptic guide.
*
* %D
*
*
* %P
* INPUT PARAMETERS:
*
* focus_s: [m] first focal point of ellipse in ABSOLUTE COORDINATES
* focus_e: [m] second focal point of ellipse in ABSOLUTE COORDINATES
* mirror_start: [m] start of mirror in ABSOLUTE COORDINATES
* guide_start: [m] start of guide in ABSOLUTE COORDINATES
* yheight: [m] the height of the mirror when not in the guide
* smallaxis: [m] the smallaxis of the guide
* length: [m] the length of the mirror
* R0=0.99: [] low angle reflectivity
* Qc: [AA-1] critical scattering vector
* alpha: [AA] slope of reflectivity
* m: [] m-value of material
* W: [AA-1] width of supermirror cutoff
* transmit: [0/1] 0: non reflected neutrons are absorbed. 1: non reflected neutrons pass through
* substrate_thickness: [m] thickness of substrate (for absorption)
* coating_thickness: [m] thickness of coating (for absorption)
* theta_1: [deg] angle of mirror wrt propagation direction at start of mirror
* theta_2: [deg] angle of mirror wrt propagation direction at center of mirror
* theta_3: [deg] angle of mirror wrt propagation direction at end of mirror
* reflect: [q(Angs-1) R(0-1)] (str) Name of relfectivity file. Format
*
* %D
*
* %E
*******************************************************************************/
DEFINE COMPONENT Mirror_Curved_Bispectral
SETTING PARAMETERS (string reflect=0,focus_s,focus_e, mirror_start, guide_start, yheight, smallaxis, length ,m, transmit=0, substrate_thickness=0.0005, coating_thickness=10e-6, theta_1=1.25, theta_2=1.25, theta_3=1.25)
SHARE
%{
%include "read_table-lib"
%}
DECLARE
%{
t_Table pTable;
%}
INITIALIZE
%{
if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0")) {
if (Table_Read(&pTable, reflect, 1) <= 0) /* read 1st block data from file into pTable */
exit(fprintf(stderr,"Mirror: %s: can not read file %s\n", NAME_CURRENT_COMP, reflect));
}
%}
TRACE
%{
double f; //half of distance between focal points
double asquared;
double a; //half of ellipse length
double b; //half of ellipse width
double xprime; //x in coordinates with center of ellipse at (xprime,zprime)=(0,0)
double ymirror; //height of the mirror
//Defining the mirror
double a1;
double b1;
double c1;
//solving the time the neutron hits the sample
double A, B, C, D, E, P, Q, R, U, V, I, J, K;
//finding rotation of mirror
double alpha1, beta1, gamma1;
double theta_m;
double sin_theta_m, cos_theta_m;
double tan_theta_1;
double tan_theta_2;
double tan_theta_3;
double v_n; //speed of neutron perpendicular to surface
double Ref; //reflectivity
double dt;
double q;
int intersect;
double discriminant;
double dt_2;
double dt_3;
int prop_case;
double x_2;
double y_2;
double z_2;
double t_2;
double x_3;
double y_3;
double z_3;
double t_3;
int x_hit;
int x_hit_2;
int x_hit_3;
double xprime_2;
double ymirror_2;
double xprime_3;
double ymirror_3;
int intersect_2;
int intersect_3;
intersect=0;
x_hit=0;
x_hit_2=0;
x_hit_3=0;
intersect_2=0;
intersect_3=0;
prop_case=0;
//printf("\n\n\n");
double old_x = x, old_y = y, old_z = z, old_t=t, old_vx=vx, old_vz=vz, old_vy=vy;
// printf("x=%f, y=%f, z=%f, vx=%f, vy=%f, vz=%f\n",x,y,z,vx,vy,vz);
// Check if neutron hits mirror. First find which z,x coordinates it hits.
//mirror is defined by z(x)=a1x^3+b1x^2+c1x+d1, with dz/dx|x=-length/2=tan(theta_1), dz/dx|x=0=tan(theta_2), dz/dx|x=length/2=tan(theta3), z(0)=0. (d1=0)
tan_theta_1=tan(theta_1*DEG2RAD);
tan_theta_2=tan(theta_2*DEG2RAD);
tan_theta_3=tan(theta_3*DEG2RAD);
a1=2.0/3.0*(tan_theta_1+tan_theta_3-2.0*tan_theta_2)/(length*length);
b1=(tan_theta_3-tan_theta_1)/(2.0*length);
c1=tan_theta_2;
//neutron trajectory is defined by x=x0+vx*t, z=z0+vz*t. setting z=a1*x^3+b1*x^2+c1*x gives the equation A*t^3+B*t^2+C*t+D=0, with
A=a1*vx*vx*vx;
B=3.0*a1*x*vx*vx+b1*vx*vx;
C=3.0*a1*x*x*vx+2.0*b1*x*vx+c1*vx-vz;
D=a1*x*x*x+b1*x*x+c1*x-z;
//printf("a1=%f,b1=%f,c1=%f",a1,b1,c1);
//this equation must now be solved for t;
if (A!=0){
P=1/3.0*(3.0*C/A-B*B/(A*A));
Q=1/27.0*(2.0*B*B*B/(A*A*A)-9.0*B*C/(A*A)+27.0*D/A);
E=P*P*P/27.0+Q*Q/4.0;
// printf("A=%f, B=%f, C=%f, D=%f, 1e6P=%f, 1e6Q=%f, 1e6E=%f\n", A, B, C, D, 1e6*P, 1e6*Q, 1e6*E);
prop_case=0;
if (E>=0){
U=cbrt(-Q/2.0+sqrt(E));
V=cbrt(-Q/2.0-sqrt(E));
I=U+V-B/(3.0*A);
dt=I;
dt_2=I;
dt_3=I;
// printf("I=%f\n",I);
// J=-(U+V)/2+1i*(U-V)*sqrt(3)/2-B/(3*A) //complex solution
// K=-(U+V)/2-1i*(U-V)*sqrt(3)/2-B/(3*A) //complex solution
}else{
R=acos(-Q/(2.0*sqrt(-P*P*P/27.0)));
// printf("R=%f\n",R);
I=2.0*sqrt(fabs(P)/3.0)*cos(R/3.0)-B/A/3.0;
J=-2.0*sqrt(fabs(P)/3.0)*cos(R/3.0 + 3.1415926535/3.0)-B/A/3.0;
K=-2.0*sqrt(fabs(P)/3.0)*cos(R/3.0 - 3.1415926535/3.0)-B/A/3.0;
// printf("2.0*sqrt(abs(P)/3.0)=%f", 2.0*sqrt(abs(P)/3.0));
// printf("cos(R/3.0)=%f, cos(R/3.0 + 3.1415926535/3.0)=%f, cos(R/3.0 - 3.1415926535/3.0)=%f, -B/A/3.0=%f\n", cos(R/3.0), cos(R/3.0 + 3.1415926535/3.0), cos(R/3.0 - 3.1415926535/3.0), -B/A/3.0);
// printf("I=%f, J=%f, K=%f, \n",I, J, K);
// printf("P=%f, R=%f, A=%f, B=%f, \n",P, R, A, B);
// Three solutions. Find the smallest positive of these.
//there are problems with the solutions....
if (I<=0){
if (J<=0 && K<=0){dt=-1.0;} //if all three are negative, dt<0 and nothing happens
if (J<=0 && K>0){dt=K;} //if only K>0, dt=K
if (J>0 && K<=0){dt=J;} //if only J>0, dt=J
if (J>0 && K>0){ //if both J>0 and K>0, compare
if (J>=K){dt=K; prop_case=1; dt_2=J;}else{dt=J; dt_2=I; prop_case=2;} } //dt is the smallest value
}else{ //end if (I<=0)
if (J<=0 && K<=0){dt=I;} //if only I>0, dt=I;
if (J<=0 && K>0){ //if both I>0 and K>0, compare
if (K>=I){dt=I; dt_2=K; prop_case=3;}else{dt=K; dt_2=I; prop_case=4;} } //dt is the smallest value
if (J>0 && K<=0){ //if both I>0 and J>0, compare
if (J>=I){dt=I; dt_2=J; prop_case=5;}else{dt=J; dt_2=I; prop_case=6;} } //dt is the smallest value
if (J>0 && K>0){ //if all three>0, compare
if (J>=K){ //either K or I is smallest
if (K>=I){dt=I; if(J>=K){ dt_2=K; dt_3=J; prop_case=9;}else{dt_2=K; dt_3=J; prop_case=15;}}else{dt=K; if (J>=I){dt_2=I; dt_3=J; prop_case=10;}else{dt_2=J; dt_3=I; prop_case=11;} } //if K is smallest, compare it to I
}else{
if (J>=I){dt=I; if (K>J){dt_2=J; dt_3=K; prop_case=12;}else{dt_2=J; dt_3=J; prop_case=16;}}else{dt=J; if (K>I){dt_2=I; dt_3=K; prop_case=13;}else{{dt_2=K; dt_3=I; prop_case=14;}} }} //else compare J to I
} //end if(J>0 && K>0)
} //end }else{ for if(I<=0)
} // end }else{ for if (E>=0)
}else{ //end if (A!=0)
if (B!=0){
discriminant=C*C-4*B*D;
if (discriminant<0){dt=-1.0;}else{ //only complex solutions: set dt<0 to avoid interaction
I=(-C-sqrt(discriminant))/(2.0*B);
J=(-C+sqrt(discriminant))/(2.0*B);
if (I<=0 && J<=0){dt = -1.0;} //both times are negative.
if (I<=0 && J>0 ){dt = J;} //set dt to only positive value.
if (I>0 && J<=0){dt = I;} //set dt to only positive value.
if (I>0 && J>0 ){if (I>J) {dt=J; dt_2=I; prop_case=7;}else{dt=I; dt_2=J; prop_case=8;} } //set dt to smallest positive value
} //end if (discriminant<0){}else{
}else{ //end if (B!)=0
if (C!=0) { dt = -D/C;}else{
printf("warning: A=B=C=0. Neutron is ignored\n"); }
} //end if(B!=0){}else{
} //end if (A!=0){}else{
//now intersection time has been found.
if (dt>0) { //if time is positive, propagate neutron to where it hits mirror. This is done without gravity.
// printf("before anything: x=%f,y=%f,z=%f,vx=%f,vy=%f,vz=%f, dt=%f\n",x,y,z,vx,vy,vz,dt);
x += vx*dt;
y += vy*dt;
z += vz*dt;
t += dt;
x_hit=(x >=-length/2 && x<=length/2);
if (prop_case==0){
x_2=x;
y_2=y;
z_2=z;
t_2=t;
x_3=x;
y_3=y;
z_3=z;
t_3=t;
}
if (prop_case>0)
{
x_2=old_x+vx*dt_2;
y_2=old_y+vy*dt_2;
z_2=old_z+vz*dt_2;
t_2=old_t+dt_2;
x_hit_2=(x_2 >=-length/2 && x_2<=length/2);
}
if (prop_case>8)
{
x_3=old_x+vx*dt_3;
y_3=old_y+vy*dt_3;
z_3=old_z+vz*dt_3;
t_3=old_t+dt_3;
x_hit_3=(x_3 >=-length/2 && x_3<=length/2);
}
//printf("x_hit=%d, x_hit_2=%d, x_hit_3=%d\n",x_hit, x_hit_2, x_hit_3);
//printf("dt=%f, dt_2=%f, dt_3=%f\n",dt,dt_2,dt_3);
// printf("x=%f,y=%f,z=%f,vx=%f,vy=%f,vz=%f\n",x,y,z,vx,vy,vz);
// printf("x=%f, length/2=%f\n",x, length/2);
if (x_hit || x_hit_2 || x_hit_3){
//if (x >=-length/2 && x<=length/2){ //check if neutron is within x limits of the mirror. If so, check if it is within y limits.
//define the ellipse
b=smallaxis/2;
f=(focus_e-focus_s)*0.5;
asquared=f*f+b*b;
a=sqrt(asquared);
xprime=-f-focus_s+mirror_start+length/2+x; //xprime is the x-coordinate in a coordinate system centered at the center of the ellipse
//ymirror=b*sqrt(1-xprime*xprime/(f*f)); //following Kaspars convention, assuming f~=a (valid for most elliptic guides normally used)
ymirror=b*sqrt(1-xprime*xprime/asquared);
xprime_2=-f-focus_s+mirror_start+length/2+x_2; //xprime is the x-coordinate in a coordinate system centered at the center of the ellipse
ymirror_2=b*sqrt(1-xprime_2*xprime_2/asquared);
xprime_3=-f-focus_s+mirror_start+length/2+x_3; //xprime is the x-coordinate in a coordinate system centered at the center of the ellipse
ymirror_3=b*sqrt(1-xprime_3*xprime_3/asquared);
if (guide_start>mirror_start){ //If (part of the) mirror is outside the guide, the mirror can be extended
if ( x<-length/2+guide_start-mirror_start) {
ymirror=yheight/2;
}
if ( x_2<-length/2+guide_start-mirror_start) {
ymirror_2=yheight/2;
}
if ( x_3<-length/2+guide_start-mirror_start) {
ymirror_3=yheight/2;
}
}
// printf("ymirror=%f, y=%f\n",ymirror, y);
intersect = ( y>=-ymirror && y<=ymirror && x >=-length/2 && x<=length/2);
if (prop_case>0) {
intersect_2 = ( y_2>=-ymirror && y_2<=ymirror && x_2 >=-length/2 && x_2<=length/2);
}
if (prop_case>8){
intersect_3 = ( y_3>=-ymirror && y_3<=ymirror && x_3 >=-length/2 && x_3<=length/2);
}
//printf("y_2=%f, ymirror=%f\n",y_2,ymirror);
//printf("\nintersect=%d, intersect_2=%d, intersect_3=%d, prop_case=%d\n",intersect, intersect_2, intersect_3, prop_case);
//printf("x=%f,y=%f,z=%f,t=%f\n",x,y,z,t);
//printf("x_2=%f,y_2=%f,z_2=%f,t_2=%f\n",x_2,y_2,z_2,t_2);
//printf("x_3=%f,y_3=%f,z_3=%f,t_3=%f\n",x_3,y_3,z_3,t_3);
if (!intersect){
if (!intersect_2){
intersect=intersect_3;
x=x_3;
y=y_3;
z=z_3;
t=t_3;
}else{
intersect=intersect_2;
x=x_2;
y=y_2;
z=z_2;
t=t_2;
}
}
//printf("intersect=%d, intersect_2=%d, intersect_3=%d, prop_case=%d\n\n",intersect, intersect_2, intersect_3, prop_case);
//printf("x=%f,y=%f,z=%f,t=%f\n",x,y,z,t);
//printf("z=%f, zcalc=%f\n",z,a1*x*x*x+b1*x*x+c1*x);
//printf("z=%f, zcalc=%f\n",z_2,a1*x_2*x_2*x_2+b1*x_2*x_2+c1*x_2);
//printf("z=%f, zcalc=%f\n",z_3,a1*x_3*x_3*x_3+b1*x_3*x_3+c1*x_3);
if (intersect) { //if neutron is within ylimits of the mirror handle reflection/transmission
//first find the angle of the mirror. It is given by theta(x)=alpha*x^2+beta*x+gamma1, with theta(-l/2)=theta1, theta(0)=theta2, theta(l/2)=theta3
alpha1=2*(theta_1+theta_3-2*theta_2)/(length*length);
beta1=(theta_3-theta_1)/length;
gamma1=theta_2;
theta_m=alpha1*x*x+beta1*x+gamma1; // angle of mirror.
//The vector normal to the mirror is e_n= sin(theta)*e_x-cos(theta)*e_z
//find amplitude of v in direction of e_n:
sin_theta_m=sin(theta_m*DEG2RAD);
cos_theta_m=cos(theta_m*DEG2RAD);
v_n=sin_theta_m*vx-cos_theta_m*vz;
q=fabs(2.0*v_n*V2Q);
double R0=0.99;
double Qc=0.0217;
double m_value=m*0.9853+0.1978;
double W=-0.0002*m_value+0.0022;
double alpha=0.1204*m_value+5.0944;
double beta=-7.6251*m_value+68.1137;
if (m_value<=3)
{alpha=m_value;
beta=0;}
/* Reflectivity (see component Guide). */
if(m == 0)
ABSORB;
if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0"))
Ref=Table_Value(pTable, q, 1);
else {
Ref = R0;
if(q > Qc)
{
double arg = (q-m_value*Qc)/W;
if(arg < 10)
Ref *= .5*(1-tanh(arg))*(1-alpha*(q-Qc)+beta*(q-Qc)*(q-Qc)); //matches data from Swiss Neutronics
else Ref=0;
}
}
if (Ref < 0) Ref=0;
else if (Ref > 1) Ref=1;
//Now comes actual reflection/transmission
if (!transmit) { //all neutrons are reflected
if (!Ref) ABSORB;
p *= Ref;
//handle reflection: change v_n -->-v_n
vx=old_vx*(cos_theta_m*cos_theta_m-sin_theta_m*sin_theta_m)+old_vz*(2*cos_theta_m*sin_theta_m);
vz=old_vx*(2*cos_theta_m*sin_theta_m)+old_vz*(sin_theta_m*sin_theta_m-cos_theta_m*cos_theta_m);
// printf("theta_m=%f, sin_theta_m=%f, cos_theta_m=%f, v_n=%f, old_vx=%f, vx=%f, old_vz=%f, vz=%f\n\n", theta_m, sin_theta_m, cos_theta_m, v_n, old_vx, vx, old_vz, vz);
SCATTER;
//printf("line 471.In mirror: x=%f,y=%f,z=%f,t=%f\n",x,y,z,t);
//printf("In mirror: old_vx=%f,old_vy=%f,old_vz=%f,vx=%f,vy=%f,vz=%f,v_n=%f\n",old_vx,old_vy,old_vz,vx,vy,vz,v_n);
} else { //if neutrons can be transmitted
//calculate absorption.
// substrate
double lambda=(2*PI/V2K)/sqrt(vx*vx + vy*vy + vz*vz);
double sin_theta=lambda*q/(4*PI);
//double substrate_path_length=substrate_thickness/sin_theta;
//double coating_path_length=coating_thickness/sin_theta;
double sin_theta_c=Qc/(4*PI);
double theta_diff;
double substrate_path_length;
double coating_path_length;
double remaining_length_through_mirror;
int hit_back_mirror;
if (v_n>0) {
hit_back_mirror=1;} else{
hit_back_mirror=0;}
remaining_length_through_mirror=length/2-x;
if (sin_theta>sin_theta_c*lambda) {
theta_diff=sqrt(sin_theta*sin_theta-sin_theta_c*sin_theta_c*lambda*lambda);
coating_path_length=coating_thickness/theta_diff;
substrate_path_length=substrate_thickness/theta_diff;
if (coating_path_length>remaining_length_through_mirror){
coating_path_length=remaining_length_through_mirror;
substrate_path_length=0;
}
if (substrate_path_length>remaining_length_through_mirror){
substrate_path_length=remaining_length_through_mirror;
}
} else{
if (hit_back_mirror==0){ //neutron comes from front of mirror
substrate_path_length=0;
coating_path_length=remaining_length_through_mirror;
}else {//neutron comes from behind mirror
substrate_path_length=remaining_length_through_mirror;
coating_path_length=0;
}
}
double mu_substrate=0.0318/lambda+0.0055*lambda-0.0050; //unit: cm^-1
mu_substrate=mu_substrate*100; //unit: m^-1;
//For nickel and titanium coating, the following formular is used:
// mu = rho/m(atom)*sigma_a,thermal*lambda/lambda_thermal
// lambda_thermal=1.798 Å
// rho_nickel=8.908g/cm^3
// m(atom)_nickel=58.6934*1.661*10^-27 kg
// sigma_a,thermal_nickel=4.49*10^-28 m^2
// rho_titanium=4.506g/cm^3
// m(atom)_titanium=47.867*1.661*10^-27 kg
// sigma_a,thermal_titanium=6.09*10^-28 m^2
double Ni_coefficient=22.8180;
double Ti_coefficient=19.1961;
double mu_coating=(0.5*Ni_coefficient+0.5*Ti_coefficient)*lambda; //it is roughly 50% nickel and 50% titanium
// transmit when rand > R
if (Ref == 0 || rand01() >= Ref) { //transmit
if (substrate_thickness>0){ p=p*exp(-mu_substrate*substrate_path_length-mu_coating*coating_path_length); //reduce weight of neutrons due to attenuation in the mirror
//x+=(coating_path_length+substrate_path_length)-(coating_thickness+substrate_thickness)/sin_theta;
//printf("xshift is %f \n",(coating_path_length+substrate_path_length)-(coating_thickness+substrate_thickness)/sin_theta);
}
// printf("line 380\n");
/*
if (v_n>0) {
printf("neutron is transmitted from back of mirror. %f\n",exp(-mu_substrate*substrate_path_length-mu_coating*coating_path_length));
}else{
printf("neutron is transmitted from front of mirror. %f\n",exp(-mu_substrate*substrate_path_length-mu_coating*coating_path_length));
}
*/
} else {//neutron is reflected
if (v_n>0 && substrate_thickness>0) { //if neutron comes from behind the mirror
// printf("neutron is reflected from back of mirror. %f\n",Ref*exp(-2*mu_substrate*substrate_path_length-2*mu_coating*coating_path_length));
p=p*exp(-2*mu_substrate*substrate_path_length-2*mu_coating*coating_path_length);} //else{ //reduce weight of neutrons due to attenuation in the mirror
// printf("neutron is reflected from front of mirror. %f\n", Ref);}
//handle reflection: change v_n -->-v_n
vx=old_vx*(cos_theta_m*cos_theta_m-sin_theta_m*sin_theta_m)+old_vz*(2*cos_theta_m*sin_theta_m);
vz=old_vx*(2*cos_theta_m*sin_theta_m)+old_vz*(sin_theta_m*sin_theta_m-cos_theta_m*cos_theta_m);
// printf("line 388\n");
}
// printf("theta_m=%f, sin_theta_m=%f, cos_theta_m=%f, v_n=%f, old_vx=%f, vx=%f, old_vz=%f, vz=%f\n\n", theta_m, sin_theta_m, cos_theta_m, v_n, old_vx, vx, old_vz, vz);
//printf("vxvx+vzvz=%f, oldvxoldvx+oldvzoldvz=%f", vx*vx+vz*vz, old_vx*old_vx+old_vz*old_vz);
SCATTER;
//printf("line 524.In mirror: x=%f,y=%f,z=%f,t=%f\n",x,y,z,t);
//printf("old_vx=%f,old_vy=%f,old_vz=%f,vx=%f,vy=%f,vz=%f,v_n=%f\n",old_vx,old_vy,old_vz,vx,vy,vz,v_n);
//after transmission or reflection
} //end } else { after if (!transmit) {
}
} // end if (x >=-length/2 && x<=length/2)
// printf("intersect=%d\n",intersect);
if (!intersect) {
/* No intersection: restore neutron position. */
x = old_x;
y = old_y;
z = old_z;
t = old_t;
// printf("line 409\n");
}
} //end if (dt>0)
%}
MCDISPLAY
%{
/*
if (xcenter==0){
xstart=0;
xend=length;
xprime_start=-a+mirror_start+xstart;
ystart=b*sqrt(1-xprime_start*xprime_start/asquared);
xprime_end=-a+mirror_start+xend;
yend=b*sqrt(1-xprime_end*xprime_end/asquared);
}
*/
/*
if (xcenter==1){
xstart=-length/2;
xend=length/2;
xprime_start=-a+mirror_start+xstart+length/2;
ystart=b*sqrt(1-xprime_start*xprime_start/asquared);
xprime_end=-a+mirror_start+xend+length/2;
yend=b*sqrt(1-xprime_end*xprime_end/asquared);
}
line(xstart,-ystart,0,xstart,ystart,0);
line(xend,-yend,0,xend,yend,0);
line(xstart,-ystart,0,xend,-yend,0);
line(xstart,ystart,0,xend,yend,0);
*/
double xstart;
double xend;
double xprime_start;
double ystart;
double xprime_end;
double yend;
double focus_2;
double focus_1;
double b;
double f;
double asquared;
double a;
int n_lines;
int j=0;
double xprimepos[51];
double ypos[51];
double x_plot[51];
double zpos[51];
double xstep;
focus_2=focus_e-mirror_start; //focus in local coordinates
focus_1=focus_s-mirror_start;
b=smallaxis/2;
f=(focus_2-focus_1)*0.5;
asquared=f*f+b*b;
a=sqrt(asquared);
xstart=-length/2;
xend=length/2;
n_lines=50;
xstep=length/n_lines;
double a1, b1, c1;
double tan_theta_1;
double tan_theta_2;
double tan_theta_3;
//mirror is defined by z(x)=a1x^3+b1x^2+c1x+d1, with dz/dx|x=-length/2=tan(theta_1), dz/dx|x=0=tan(theta_2), dz/dx|x=length/2=tan(theta3), z(0)=0. (d1=0)
tan_theta_1=tan(theta_1*DEG2RAD);
tan_theta_2=tan(theta_2*DEG2RAD);
tan_theta_3=tan(theta_3*DEG2RAD);
a1=2.0/3.0*(tan_theta_1+tan_theta_3-2.0*tan_theta_2)/(length*length);
b1=(tan_theta_3-tan_theta_1)/(2.0*length);
c1=tan_theta_2;
for (j=0; j<n_lines+1; j++)
{
xprimepos[j]=-f-focus_s+mirror_start+length/2+xstart+xstep*j;
ypos[j]=b*sqrt(1-xprimepos[j]*xprimepos[j]/asquared); //correct
if (guide_start>mirror_start){
if ( xstart+xstep*j<-length/2+guide_start-mirror_start) {
ypos[j]=yheight/2;
}
}
// ypos[j]=b*sqrt(1-xprimepos[j]*xprimepos[j]/(f*f)); //following convention in Kaspar's elliptic guide..
// printf("xprimepos[j]=%f,f*f=%f, ypos[j]=%f\n",xprimepos[j],f*f,ypos[j]);
x_plot[j]=xstart+xstep*j;
zpos[j]=a1*x_plot[j]*x_plot[j]*x_plot[j]+b1*x_plot[j]*x_plot[j]+c1*x_plot[j];
}
for (j=0; j<n_lines; j++)
{
line(x_plot[j], -ypos[j], zpos[j], x_plot[j+1], -ypos[j+1],zpos[j+1]);
line(x_plot[j], ypos[j], zpos[j], x_plot[j+1], ypos[j+1],zpos[j+1]);
}
line(x_plot[0],-ypos[0],zpos[0],x_plot[0],ypos[0],zpos[0]);
line(x_plot[50],-ypos[50],zpos[50],x_plot[50],ypos[50],zpos[50]);
//printf("ypos0=%f xpos0=%f ypos50=%f xpos50=%f",ypos[0], x_plot[0], ypos[50], x_plot[50]);
/* double xmax, xmin, ymax, ymin;
if (center == 0) {
xmax= x1; xmin=0;
ymax= yheight; ymin=0;
} else {
xmax= x1/2; xmin=-xmax;
ymax= yheight/2; ymin=-ymax;
}
multiline(5, (double)xmin, (double)ymin, 0.0,
(double)xmax, (double)ymin, 0.0,
(double)xmax, (double)ymax, 0.0,
(double)xmin, (double)ymax, 0.0,
(double)xmin, (double)ymin, 0.0);
*/
%}
END
|