1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2011, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: curved_mirror
*
* %I
* Written by: Henrik Jacobsen
* Date: April 2012
* Origin: RNBI
*
* Single mirror plate that is curved and fits into an elliptic guide.
*
* %D
*
*
* %P
* INPUT PARAMETERS:
*
* focus_start_w: [m] Horizontal position of first focal point of ellipse in ABSOLUTE COORDINATES
* focus_start_h: [m] Vertical position of first focal point of ellipse in ABSOLUTE COORDINATES
* focus_end_w: [m] Horizontal position of second focal point of ellipse in ABSOLUTE COORDINATES
* focus_end_h: [m] VErtical position of second focal point of ellipse in ABSOLUTE COORDINATES
* mirror_start: [m] start of mirror in ABSOLUTE COORDINATES
* guide_start: [m] start of guide in ABSOLUTE COORDINATES
* smallaxis_w: [m] Small-axis dimension of horizontal ellipse
* smallaxis_h: [m] Small-axis dimension of vertical ellipse
* yheight: [m] the height of the mirror when not in the guide
* smallaxis: [m] the smallaxis of the guide
* length: [m] the length of the mirror
* R0=0.99: [] low angle reflectivity
* Qc: [AA-1] critical scattering vector
* alpha: [AA] slope of reflectivity
* m: [] m-value of material
* W: [AA-1] width of supermirror cutoff
* transmit: [0/1] 0: non reflected neutrons are absorbed. 1: non reflected neutrons pass through
* substrate_thickness: [m] thickness of substrate (for absorption)
* coating_thickness: [m] thickness of coating (for absorption)
* theta_1: [deg] angle of mirror wrt propagation direction at start of mirror
* theta_2: [deg] angle of mirror wrt propagation direction at center of mirror
* theta_3: [deg] angle of mirror wrt propagation direction at end of mirror
* reflect: [q(Angs-1) R(0-1)] (str) Name of relfectivity file. Format
*
*
*
* %D
*
* %E
*******************************************************************************/
DEFINE COMPONENT Mirror_Elliptic_Bispectral
SETTING PARAMETERS (string reflect=0,focus_start_w,focus_end_w, focus_start_h, focus_end_h, mirror_start, m, smallaxis_w, smallaxis_h, length, transmit=0, substrate_thickness=0.0005, coating_thickness=10e-6)
SHARE
%{
%include "read_table-lib"
%}
DECLARE
%{
t_Table pTable;
%}
INITIALIZE
%{
if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0")) {
if (Table_Read(&pTable, reflect, 1) <= 0) /* read 1st block data from file into pTable */
exit(fprintf(stderr,"Mirror: %s: can not read file %s\n", NAME_CURRENT_COMP, reflect));
}
%}
TRACE
%{
double f; //half of distance between focal points
double asquared;
double a; //half of ellipse length
double b; //half of ellipse width
double xprime; //x in coordinates with center of ellipse at (xprime,zprime)=(0,0)
double ymirror; //height of the mirror
//Defining the mirror
double a1;
double b1;
double c1;
//solving the time the neutron hits the sample
double A, B, C, D, E, P, Q, R, U, V, I, J, K;
//finding rotation of mirror
double alpha1, beta1, gamma1;
double theta_m;
double xhi, zeta;
double b_w;
double f_w;
double asquared_w;
double A_w;
double B_w;
double C_w;
double determinant_w;
double b_h;
double f_h;
double asquared_h;
double xprime_h;
double xprime_w;
double zprime_w;
double asquare_z;
double bsquare_x;
double v_n; //speed of neutron perpendicular to surface
double Ref; //reflectivity
double dt;
double q;
int intersect;
double discriminant;
double xprime_start_w;
double zprime_start_w;
double z_test;
double x_test;
double z_prime_test;
int hit_back_flag;
int prop_case;
double x_2;
double y_2;
double z_2;
double t_2;
int x_hit;
int x_hit_2;
double xprime_h_2;
double ymirror_2;
int intersect_2;
intersect=0;
x_2=0;
y_2=0;
z_2=0;
t_2=-1;
prop_case=0;
double old_x = x, old_y = y, old_z = z, old_t=t, old_vx=vx, old_vz=vz, old_vy=vy;
// Check if neutron hits mirror. First find which z,x coordinates it hits.
//define the ellipse
b_w=smallaxis_w/2;
f_w=(focus_end_w-focus_start_w)*0.5;
asquared_w=f_w*f_w+b_w*b_w;
//in coordinate system of mirror: xprime_w(t)=xprime_w+vx*t. z-value is zprime(t)=b*sqrt(1-x'^2/a^2)+old_z+vz*t. This gives equation for t: A_w*t^2+B_w*t+C_w=0;
xprime_start_w=old_x-f_w-focus_start_w+mirror_start;
zprime_start_w=z;
A_w=b_w*b_w*vx*vx+asquared_w*vz*vz;
B_w=2*b_w*b_w*xprime_start_w*vx+2*asquared_w*old_z*vz;
C_w=b_w*b_w*xprime_start_w*xprime_start_w+asquared_w*old_z*old_z-asquared_w*b_w*b_w;
//this equation must now be solved for t;
if (A_w!=0){
determinant_w=B_w*B_w-4.0*A_w*C_w;
if (determinant_w>=0){
I=(-B_w-sqrt(determinant_w))/(2.0*A_w);
J=(-B_w+sqrt(determinant_w))/(2.0*A_w);
if (I<=0 && J<=0){dt = -1.0;} //both times are negative.
if (I<=0 && J>0 ){dt = J;} //set dt to only positive value.
if (I>0 && J<=0){dt = I;} //set dt to only positive value.
if (I>0 && J>0 ){prop_case=1; if (I>J) {dt=J;}else{dt=I;}} //set dt to smallest positive value
} else {dt=-1.0;} //only complex solutions: set dt negative so no scattering
}else{ //end if (A!=0)
if (B_w!=0){
dt=-C/B_w;
}else{ //end if (B!)=0
printf("warning: A_w=B_w=C_w=0. Neutron is ignored\n"); }
} //end if (A!=0){}else{
//now intersection time has been found.
//printf("dt=%f\n",dt);
if (dt>0) { //if time is positive, propagate neutron to where it hits mirror. This is done without gravity.
x += vx*dt;
y += vy*dt;
z += vz*dt;
t += dt;
if (prop_case>0) //also check if neutron can hit mirror at second solution - it might not be in y-range for first solution
{
x_2=x+vx*fabs(J-I);
y_2=y+vy*fabs(J-I);
z_2=z+vz*fabs(J-I);
t_2=t+fabs(J-I);
}else{
x_2=x;
y_2=y;
z_2=z;
t_2=t;
}
x_hit=(x>=0 &&x<=length);
x_hit_2=(x_2>=0 &&x_2<=length);
// printf("x=%f,y=%f,z=%f\n",x,y,z);
//if (x >=0 && x<=length){ //check if neutron is within x limits of the mirror. If so, check if it is within y limits.
if (x_hit || x_hit_2){
//define the ellipse
b_h=smallaxis_h/2;
f_h=(focus_end_h-focus_start_h)*0.5;
asquared_h=f_h*f_h+b_h*b_h;
xprime_h=-f_h-focus_start_h+mirror_start+x; //xprime is the x-coordinate in a coordinate system centered at the center of the ellipse
ymirror=b_h*sqrt(1-xprime_h*xprime_h/asquared_h);
xprime_h_2=-f_h-focus_start_h+mirror_start+x_2; //xprime is the x-coordinate in a coordinate system centered at the center of the ellipse
ymirror_2=b_h*sqrt(1-xprime_h_2*xprime_h_2/asquared_h);
intersect = ( y>=-ymirror && y<=ymirror && x>=0 && x<=length && zprime_start_w+vz*dt>=0);
intersect_2 = ( y_2>=-ymirror_2 && y_2<=ymirror_2 && x_2>=0 && x_2<=length && zprime_start_w+vz*(dt+fabs(J-I))>=0);
if (!intersect && intersect_2){ //if neutron doesn't hit mirror with smallest t, but hits with largest t, propagte to largest t
intersect=intersect_2;
x=x_2;
y=y_2;
z=z_2;
t=t_2;
dt=t_2-old_t;
//printf("x=%f,y=%f,z=%f\n",x,y,z);
}
if (intersect) { //if neutron is within ylimits of the mirror handle reflection/transmission
//now perform reflection.
//First find out if neutron hits front or back of mirror: propagate backwards a bit and check if neutron is outside ellipse: if so, it hits back of mirror
b_w=smallaxis_w/2.0;
f_w=(focus_end_w-focus_start_w)*0.5;
asquared_w=f_w*f_w+b_w*b_w;
z_test=zprime_start_w+vz*(dt-1e-6);
x_test=xprime_start_w+vx*(dt-1e-6);
z_prime_test=b_w*sqrt(1-x_test*x_test/asquared_w);
//find velocity in q direction.
xprime_w=xprime_start_w+vx*dt;
zprime_w=zprime_start_w+vz*dt;
asquare_z=asquared_w*zprime_w;
bsquare_x=b_w*b_w*xprime_w;
zeta=(asquare_z)/(sqrt(asquare_z*asquare_z+bsquare_x*bsquare_x));
xhi=-(bsquare_x)/(sqrt(asquare_z*asquare_z+bsquare_x*bsquare_x));
//printf("z_test=%f, z_prime_test=%f\n",z_test,z_prime_test);
if (z_test>z_prime_test) {
hit_back_flag=1;
}
//printf("vx=%f, vz=%f, vy=%f, xhi=%f, zeta=%f, prop_case=%d\n",vx,vz,vy,xhi,zeta,prop_case);
v_n=-xhi*vx+zeta*vz;
q=fabs(2.0*v_n*V2Q);
//Reflectivity parameters calculated from SWISS neutronics data.
double R0=0.99;
double Qc=0.0217;
double m_value=m*0.9853+0.1978;
double W=-0.0002*m_value+0.0022;
double alpha=0.1204*m_value+5.0944;
double beta=-7.6251*m_value+68.1137;
if (m_value<=3)
{alpha=m_value;
beta=0;}
/* Reflectivity (see component Guide). */
if(m == 0)
ABSORB;
if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0"))
Ref=Table_Value(pTable, q, 1);
else {
Ref = R0;
if(q > Qc)
{
double arg = (q-m_value*Qc)/W;
if(arg < 10)
Ref *= .5*(1-tanh(arg))*(1-alpha*(q-Qc)+beta*(q-Qc)*(q-Qc)); //matches data from Swiss Neutronics
else Ref=0;
}
}
if (Ref < 0) Ref=0;
else if (Ref > 1) Ref=1;
//Now comes actual reflection/transmission
if (!transmit) { //all neutrons are reflected
//printf("v_n=%f,q=%f, Ref=%f, lambda=%f, theta=%f, 1p_before=%f",v_n,q, Ref, (2*PI/V2K)/sqrt(vx*vx + vy*vy + vz*vz),asin((2*PI/V2K)/sqrt(vx*vx + vy*vy + vz*vz)*q/(4*PI))*RAD2DEG,p);
if (!Ref) ABSORB;
p *= Ref;
//printf("p_after=%f\n",p);
//handle reflection: change v_n -->-v_n
vx=old_vx*(zeta*zeta-xhi*xhi)+old_vz*(2*zeta*xhi);
vz=+old_vx*(2*zeta*xhi)+old_vz*(xhi*xhi-zeta*zeta);
SCATTER; //after transmission or reflection
} else { //if neutrons can be transmitted
//calculate absorption.
// substrate
double lambda=(2*PI/V2K)/sqrt(vx*vx + vy*vy + vz*vz);
double sin_theta=lambda*q/(4*PI);
double substrate_path_length=substrate_thickness/sin_theta;
double mu_substrate=0.0318/lambda+0.0055*lambda-0.0050; //unit: cm^-1
mu_substrate=mu_substrate*100; //unit: m^-1;
//For nickel and titanium coating, the following formular is used:
// mu = rho/m(atom)*sigma_a,thermal*lambda/lambda_thermal
// lambda_thermal=1.798 Å
// rho_nickel=8.908g/cm^3
// m(atom)_nickel=58.6934*1.661*10^-27 kg
// sigma_a,thermal_nickel=4.49*10^-28 m^2
// rho_titanium=4.506g/cm^3
// m(atom)_titanium=47.867*1.661*10^-27 kg
// sigma_a,thermal_titanium=6.09*10^-28 m^2
double coating_path_length=coating_thickness/sin_theta;
double Ni_coefficient=22.8180;
double Ti_coefficient=19.1961;
double mu_coating=(0.5*Ni_coefficient+0.5*Ti_coefficient)*lambda; //it is roughly 50% nickel and 50% titanium
// transmit when rand > R
if (Ref == 0 || rand01() >= Ref) { //transmit
if (substrate_thickness>0){ p=p*exp(-mu_substrate*substrate_path_length-mu_coating*coating_path_length);} //reduce weight of neutrons due to attenuation in the mirror
} else {//neutron is reflected
if (hit_back_flag==1 && substrate_thickness>0) { //if neutron comes from behind the mirror
p=p*exp(-2*mu_substrate*substrate_path_length-2*mu_coating*coating_path_length);} //reduce weight of neutrons due to attenuation in the mirror
//handle reflection: change v_n -->-v_n
vx=old_vx*(zeta*zeta-xhi*xhi)-old_vz*(2*zeta*xhi);
vz=-old_vx*(2*zeta*xhi)+old_vz*(xhi*xhi-zeta*zeta);
}
//printf("p_before=%f, q=%f",p,q);
SCATTER; //after transmission or reflection
//printf("p_after=%f\n",p);
} //end } else { after if (!transmit) {
}
} // end if (x >=-length/2 && x<=length/2)
if (!intersect) {
/* No intersection: restore neutron position. */
x = old_x;
y = old_y;
z = old_z;
t = old_t;
}
} //end if (dt>0)
%}
MCDISPLAY
%{
double xstart;
double xend;
double xprime_start;
double ystart;
double xprime_end;
double yend;
double focus_2_h;
double focus_1_h;
double b_h;
double f_h;
double asquared_h;
double focus_2_w;
double focus_1_w;
double b_w;
double f_w;
double asquared_w;
int n_lines;
int j=0;
double xprimepos[51];
double ypos[51];
double x_plot[51];
double zpos[51];
double xstep;
double xprime_w[51];
focus_2_h=focus_end_h; //focus in local coordinates
focus_1_h=focus_start_h;
b_h=smallaxis_h/2.0;
f_h=(focus_2_h-focus_1_h)*0.5;
asquared_h=f_h*f_h+b_h*b_h;
focus_2_w=focus_end_w; //focus in local coordinates
focus_1_w=focus_start_w;
b_w=smallaxis_w/2.0;
f_w=(focus_2_w-focus_1_w)*0.5;
asquared_w=f_w*f_w+b_w*b_w;
xstart=0;
xend=length;
n_lines=50;
xstep=length/n_lines;
for (j=0; j<n_lines+1; j++)
{
xprimepos[j]=-f_h-focus_start_h+mirror_start+xstart+xstep*j;
ypos[j]=b_h*sqrt(1-xprimepos[j]*xprimepos[j]/asquared_h); //correct
x_plot[j]=xstart+xstep*j;
xprime_w[j]=-f_w-focus_start_w+mirror_start+xstart+xstep*j; //xprime is the x-coordinate in a coordinate system centered at the center of the ellipse
zpos[j]=b_w*sqrt(1-xprime_w[j]*xprime_w[j]/asquared_w);
//printf("xprime=%f, zpos=%f\n",xprime_w[j], zpos[j]);
}
for (j=0; j<n_lines; j++)
{
line(x_plot[j], -ypos[j], zpos[j], x_plot[j+1], -ypos[j+1],zpos[j+1]);
line(x_plot[j], ypos[j], zpos[j], x_plot[j+1], ypos[j+1],zpos[j+1]);
}
line(x_plot[0],-ypos[0],zpos[0],x_plot[0],ypos[0],zpos[0]);
line(x_plot[50],-ypos[50],zpos[50],x_plot[50],ypos[50],zpos[50]);
//printf("ypos0=%f xpos0=%f ypos50=%f xpos50=%f",ypos[0], x_plot[0], ypos[50], x_plot[50]);
/* double xmax, xmin, ymax, ymin;
if (center == 0) {
xmax= x1; xmin=0;
ymax= yheight; ymin=0;
} else {
xmax= x1/2; xmin=-xmax;
ymax= yheight/2; ymin=-ymax;
}
multiline(5, (double)xmin, (double)ymin, 0.0,
(double)xmax, (double)ymin, 0.0,
(double)xmax, (double)ymax, 0.0,
(double)xmin, (double)ymax, 0.0,
(double)xmin, (double)ymin, 0.0);
*/
%}
END
|