File: Monochromator_2foc.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (316 lines) | stat: -rw-r--r-- 9,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Monochromator_2foc
*
* %Identification
* Written by: <a href="mailto:plink@physik.tu-muenchen.de">Peter Link</a>.
* Date: Feb. 12,1999
* Origin: Uni. Gottingen (Germany)
* Modified by: Peter Link Feb. 12,1999, Added double bent feature by:
* Modified by: Peter Link Sep. 24. 1999, corrected bug in rotation of v-coords:
* Modified by: EF, Feb 13th 2002: Read reflectivity table
*
* Double bent monochromator with multiple slabs
*
* %Description
* Double bent monochromator which uses a small-mosaicity approximation as well
* as the approximation vy^2 << vz^2 + vx^2.
* Second order scattering is neglected.
* For an unrotated monochromator component, the crystal plane lies in the y-z
* plane (ie. parallel to the beam).
* When curvatures are set to 0, the monochromator is flat.
* The curvatures approximation for parallel beam focusing to distance L, with
* monochromator rotation angle A1 are:
*   RV = 2*L*sin(DEG2RAD*A1);
*   RH = 2*L/sin(DEG2RAD*A1);
*
* Example: Monochromator_2foc(zwidth=0.02, yheight=0.02, gap=0.0005, NH=11, NV=11,
*           mosaich=30, mosaicv=30, r0=0.7, Q=1.8734)
*
* Example values for lattice parameters
* PG       002 DM=3.355 AA (Highly Oriented Pyrolytic Graphite)
* PG       004 DM=1.607 AA
* Heusler  111 DM=3.362 AA (Cu2MnAl)
* CoFe         DM=1.771 AA (Co0.92Fe0.08)b
* Ge       311 DM=1.714 AA
* Si       111 DM=3.135 AA
* Cu       111 DM=2.087 AA
* Cu       002 DM=1.807 AA
* Cu       220 DM=1.278 AA
* Cu       111 DM=2.095 AA
*
* %Parameters
* INPUT PARAMETERS:
*
* zwidth: [m]      horizontal width of an individual slab 
* yheight: [m]     vertical height of an individual slab 
* gap: [m]         typical gap  between adjacent slabs 
* NH: [columns]    number of slabs horizontal 
* NV: [rows]       number of slabs vertical   
* mosaich: []      Horisontal mosaic FWHM (arc minutes)
* mosaicv: []      Vertical mosaic FWHM (arc minutes)
* r0: [1]          Maximum reflectivity 
* Q: [AA-1]        Scattering vector 
* RV: [m]          radius of vertical focussing, flat for 0 
* RH: [m]          radius of horizontal focussing, flat for 0 
*
* optional parameters
* DM: [Angstrom]   monochromator d-spacing instead of Q=2*pi/DM 
* mosaic: []       sets mosaich=mosaicv (arc minutes)
* width: [m]       total width of monochromator 
* height: [m]      total height of monochromator 
* verbose: [0/1]   verbosity level 
* reflect: [k, R]  reflectivity file name of text file as 2 columns 
*
* %Link
* <a href="http://mailman.risoe.dk/pipermail/neutron-mc/1999q1/000133.html">Additional note</a> from <a href="mailto:plink@physik.tu-muenchen.de">Peter Link</a>.
*
* %End
*******************************************************************************/

DEFINE COMPONENT Monochromator_2foc

SETTING PARAMETERS (string reflect=0, zwidth=0.01, yheight=0.01, gap=0.0005, NH=11, NV=11, mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734, RV=0, RH=0, DM=0, mosaic=0, width=0, height=0, verbose=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "read_table-lib"
#ifndef DIV_CUTOFF
#define DIV_CUTOFF 2            /* ~ 10^-5 cutoff. */
#endif
%}
DECLARE
%{
double mos_y; /* mosaic - in radians */
double mos_z;
double mono_Q;
double SlabWidth;
double SlabHeight;
t_Table rTable;
%}

INITIALIZE
%{
if (mosaic != 0) {
    mos_y = mosaic;
    mos_z = mos_y; }
  else {
    mos_y = mosaich;
    mos_z = mosaicv; }

  mono_Q = Q;
  if (DM != 0) mono_Q = 2*PI/DM;

  if (mono_Q == 0) { fprintf(stderr,"Monochromator_2foc: %s: Error scattering vector Q = 0\n", NAME_CURRENT_COMP); exit(-1); }
  if (r0 == 0) { fprintf(stderr,"Monochromator_2foc: %s: Error reflectivity r0 is null\n", NAME_CURRENT_COMP); exit(-1); }
  if (NH*NV == 0) { fprintf(stderr,"Monochromator_2foc: %s: no slabs ??? (NH or NV=0)\n", NAME_CURRENT_COMP); exit(-1); }

  if (verbose)
  {
    printf("Monochromator_2foc: component %s Q=%.3g Angs-1 (DM=%.4g Angs)\n", NAME_CURRENT_COMP, mono_Q, 2*PI/mono_Q);
    if (NH*NV == 1) printf("            flat.\n");
    else
    { if (NH > 1)
      { printf("            horizontal: %i blades", (int)NH);
        if (RH != 0) printf(" focusing with RH=%.3g [m]", RH);
        printf("\n");
      }
      if (NV > 1)
      { printf("            vertical:   %i blades", (int)NV);
        if (RV != 0) printf(" focusing with RV=%.3g [m]", RV);
        printf("\n");
      }
    }
  }

  if (reflect != NULL)
  {
    if (verbose) fprintf(stdout, "Monochromator_2foc: %s : Reflectivity data (k, R)\n", NAME_CURRENT_COMP);
    Table_Read(&rTable, reflect, 1); /* read 1st block data from file into rTable */
    Table_Rebin(&rTable);         /* rebin as evenly, increasing array */
    if (rTable.rows < 2) Table_Free(&rTable);
    Table_Info(rTable);
  } else rTable.data = NULL;

  if (width == 0) SlabWidth = zwidth;
  else SlabWidth = (width+gap)/NH - gap;
  if (height == 0) SlabHeight = yheight;
  else SlabHeight = (height+gap)/NV - gap;
%}

TRACE
%{
  double dt;

  if(vx != 0.0 && (dt = -x/vx) >= 0.0)
  {
    double zmin,zmax, ymin,ymax, zp,yp, y1,z1,t1;

    zmax = ((NH*(SlabWidth+gap))-gap)/2;
    zmin = -1*zmax;
    ymax = ((NV*(SlabHeight+gap))-gap)/2;
    ymin = -1*ymax;
    y1 = y + vy*dt;             /* Propagate to crystal plane */
    z1 = z + vz*dt;
    t1 = t + dt;
    zp = fmod ( (z1-zmin),(SlabWidth+gap) );
    yp = fmod ( (y1-ymin),(SlabHeight+gap) );


    /* hit a slab or a gap ? */

    if (z1>zmin && z1<zmax && y1>ymin && y1<ymax && zp<SlabWidth && yp< SlabHeight)
    {
      double row,col, sna,snb,csa,csb,vxp,vyp,vzp;
      double v, theta0, theta, tmp3;
      double tilth,tiltv;         /* used to calculate tilt angle of slab */

      col = ceil ( (z1-zmin)/(SlabWidth+gap));  /* which slab hit ? */
      row = ceil ( (y1-ymin)/(SlabHeight+gap));
      if (RH != 0) tilth = asin((col-(NH+1)/2)*(SlabWidth+gap)/RH);
      else tilth=0;
      if (RV != 0) tiltv = -asin((row-(NV+1)/2)*(SlabHeight+gap)/RV);
      else tiltv=0;

      /* rotate with tilth and tiltv */

      sna = sin(tilth);
      snb = sin(tiltv);
      csa = cos(tilth);
      csb = cos(tiltv);
      vxp = vx*csa*csb+vy*snb-vz*sna*csb;
      vyp = -vx*csa*snb+vy*csb+vz*sna*snb;
      vzp = vx*sna+vz*csa;

      /* First: scattering in plane */
      /* theta0 = atan2(vx,vz);  neutron angle to slab Risoe version */

      v = sqrt(vxp*vxp+vyp*vyp+vzp*vzp);
      theta0 = asin(vxp/v);                /* correct neutron angle to slab */

      theta = asin(Q2V*mono_Q/(2.0*v));               /* Bragg's law */
      if (theta0 < 0)
              theta = -theta;
      tmp3 = (theta-theta0)/(MIN2RAD*mos_y);
      if (tmp3 < DIV_CUTOFF)
      {
        double my_r0, k;
        double dphi,tmp1,tmp2,tmp4,vratio,phi,cs,sn;

        k = V2K*v;

#ifndef OPENACC
        if (rTable.data != NULL)
        {
          my_r0 = r0*Table_Value(rTable, k, 1); /* 2nd column */
        }
        else
#endif
	  my_r0 = r0;

	if (my_r0 >= 1)
        {
#ifndef OPENACC
          if (verbose) fprintf(stdout, "Warning: Monochromator_2foc: %s: lowered reflectivity from %f to 0.99 (k=%f)\n", 
            NAME_CURRENT_COMP, my_r0, k);
#endif
          my_r0=0.99;
        }
        if (my_r0 < 0)
        {
#ifndef OPENACC
          if (verbose) fprintf(stdout, "Warning: Monochromator_2foc: %s: raised reflectivity from %f to 0 (k=%f)\n", 
          NAME_CURRENT_COMP, my_r0, k);
#endif
          my_r0=0;
        }
        x = 0.0;
        y = y1;
        z = z1;
        t = t1;
        
        /* reflectivity */
        t1 = fabs(my_r0)*exp(-tmp3*tmp3*4*log(2));
        if (t1 <= 0) ABSORB;
        if (t1 > 1)  t1 = 1;
        p *= t1; /* Use mosaics */
        
        tmp1 = 2*theta;
        cs = cos(tmp1);
        sn = sin(tmp1);
        tmp2 = cs*vxp - sn*vzp;
        vyp = vyp;
        /* vz = cs*vz + sn*vx; diese Zeile wurde durch die folgende ersetzt */
        tmp4 = vyp/vzp;  /* korrigiert den schr�en Einfall aufs Pl�tchen  */
        vzp = cs*(-vyp*sin(tmp4)+vzp*cos(tmp4)) + sn*vxp;
        vxp = tmp2;

        /* Second: scatering out of plane.
           Approximation is that Debye-Scherrer cone is a plane */

        phi = atan2(vyp,vzp);  /* out-of plane angle */
        dphi = (MIN2RAD*mos_z)/(2*sqrt(2*log(2)))*randnorm();  /* MC choice: */
        /* Vertical angle of the crystallite */
        vyp = vzp*tan(phi+2*dphi*sin(theta));
        vratio = v/sqrt(vxp*vxp+vyp*vyp+vzp*vzp);
        vzp = vzp*vratio;
        vyp = vyp*vratio;                             /* Renormalize v */
        vxp = vxp*vratio;

        /* rotate v coords back */
        vx = vxp*csb*csa-vyp*snb*csa+vzp*sna;
        vy = vxp*snb+vyp*csb;
        vz = -vxp*csb*sna+vyp*snb*sna+vzp*csa;
        /* v=sqrt(vx*vx+vy*vy+vz*vz);  */
        SCATTER;
      } /* end if Bragg ok */
    } /* End intersect the crystal (if z1) */
  } /* End neutron moving towards crystal (if vx)*/
%}

MCDISPLAY
%{
  int ih;

  
  for(ih = 0; ih < NH; ih++)
  {
    int iv;
    for(iv = 0; iv < NV; iv++)
    {
      double zmin,zmax,ymin,ymax;
      double xt, xt1, yt, yt1;

      zmin = (SlabWidth+gap)*(ih-NH/2.0)+gap/2;
      zmax = zmin+SlabWidth;
      ymin = (SlabHeight+gap)*(iv-NV/2.0)+gap/2;
      ymax = ymin+SlabHeight;

      if (RH)
      { xt = zmin*zmin/RH;
        xt1 = zmax*zmax/RH; }
      else { xt = 0; xt1 = 0; }

      if (RV)
      { yt = ymin*ymin/RV;
        yt1 = ymax*ymax/RV; }
      else { yt = 0; yt1 = 0; }
      multiline(5, xt+yt, (double)ymin, (double)zmin,
                   xt+yt1, (double)ymax, (double)zmin,
                   xt1+yt1, (double)ymax, (double)zmax,
                   xt1+yt, (double)ymin, (double)zmax,
                   xt+yt, (double)ymin, (double)zmin);
     }
   }
%}

END