1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Monochromator_2foc
*
* %Identification
* Written by: <a href="mailto:plink@physik.tu-muenchen.de">Peter Link</a>.
* Date: Feb. 12,1999
* Origin: Uni. Gottingen (Germany)
* Modified by: Peter Link Feb. 12,1999, Added double bent feature by:
* Modified by: Peter Link Sep. 24. 1999, corrected bug in rotation of v-coords:
* Modified by: EF, Feb 13th 2002: Read reflectivity table
*
* Double bent monochromator with multiple slabs
*
* %Description
* Double bent monochromator which uses a small-mosaicity approximation as well
* as the approximation vy^2 << vz^2 + vx^2.
* Second order scattering is neglected.
* For an unrotated monochromator component, the crystal plane lies in the y-z
* plane (ie. parallel to the beam).
* When curvatures are set to 0, the monochromator is flat.
* The curvatures approximation for parallel beam focusing to distance L, with
* monochromator rotation angle A1 are:
* RV = 2*L*sin(DEG2RAD*A1);
* RH = 2*L/sin(DEG2RAD*A1);
*
* Example: Monochromator_2foc(zwidth=0.02, yheight=0.02, gap=0.0005, NH=11, NV=11,
* mosaich=30, mosaicv=30, r0=0.7, Q=1.8734)
*
* Example values for lattice parameters
* PG 002 DM=3.355 AA (Highly Oriented Pyrolytic Graphite)
* PG 004 DM=1.607 AA
* Heusler 111 DM=3.362 AA (Cu2MnAl)
* CoFe DM=1.771 AA (Co0.92Fe0.08)b
* Ge 311 DM=1.714 AA
* Si 111 DM=3.135 AA
* Cu 111 DM=2.087 AA
* Cu 002 DM=1.807 AA
* Cu 220 DM=1.278 AA
* Cu 111 DM=2.095 AA
*
* %Parameters
* INPUT PARAMETERS:
*
* zwidth: [m] horizontal width of an individual slab
* yheight: [m] vertical height of an individual slab
* gap: [m] typical gap between adjacent slabs
* NH: [columns] number of slabs horizontal
* NV: [rows] number of slabs vertical
* mosaich: [] Horisontal mosaic FWHM (arc minutes)
* mosaicv: [] Vertical mosaic FWHM (arc minutes)
* r0: [1] Maximum reflectivity
* Q: [AA-1] Scattering vector
* RV: [m] radius of vertical focussing, flat for 0
* RH: [m] radius of horizontal focussing, flat for 0
*
* optional parameters
* DM: [Angstrom] monochromator d-spacing instead of Q=2*pi/DM
* mosaic: [] sets mosaich=mosaicv (arc minutes)
* width: [m] total width of monochromator
* height: [m] total height of monochromator
* verbose: [0/1] verbosity level
* reflect: [k, R] reflectivity file name of text file as 2 columns
*
* %Link
* <a href="http://mailman.risoe.dk/pipermail/neutron-mc/1999q1/000133.html">Additional note</a> from <a href="mailto:plink@physik.tu-muenchen.de">Peter Link</a>.
*
* %End
*******************************************************************************/
DEFINE COMPONENT Monochromator_2foc
SETTING PARAMETERS (string reflect=0, zwidth=0.01, yheight=0.01, gap=0.0005, NH=11, NV=11, mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734, RV=0, RH=0, DM=0, mosaic=0, width=0, height=0, verbose=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "read_table-lib"
#ifndef DIV_CUTOFF
#define DIV_CUTOFF 2 /* ~ 10^-5 cutoff. */
#endif
%}
DECLARE
%{
double mos_y; /* mosaic - in radians */
double mos_z;
double mono_Q;
double SlabWidth;
double SlabHeight;
t_Table rTable;
%}
INITIALIZE
%{
if (mosaic != 0) {
mos_y = mosaic;
mos_z = mos_y; }
else {
mos_y = mosaich;
mos_z = mosaicv; }
mono_Q = Q;
if (DM != 0) mono_Q = 2*PI/DM;
if (mono_Q == 0) { fprintf(stderr,"Monochromator_2foc: %s: Error scattering vector Q = 0\n", NAME_CURRENT_COMP); exit(-1); }
if (r0 == 0) { fprintf(stderr,"Monochromator_2foc: %s: Error reflectivity r0 is null\n", NAME_CURRENT_COMP); exit(-1); }
if (NH*NV == 0) { fprintf(stderr,"Monochromator_2foc: %s: no slabs ??? (NH or NV=0)\n", NAME_CURRENT_COMP); exit(-1); }
if (verbose)
{
printf("Monochromator_2foc: component %s Q=%.3g Angs-1 (DM=%.4g Angs)\n", NAME_CURRENT_COMP, mono_Q, 2*PI/mono_Q);
if (NH*NV == 1) printf(" flat.\n");
else
{ if (NH > 1)
{ printf(" horizontal: %i blades", (int)NH);
if (RH != 0) printf(" focusing with RH=%.3g [m]", RH);
printf("\n");
}
if (NV > 1)
{ printf(" vertical: %i blades", (int)NV);
if (RV != 0) printf(" focusing with RV=%.3g [m]", RV);
printf("\n");
}
}
}
if (reflect != NULL)
{
if (verbose) fprintf(stdout, "Monochromator_2foc: %s : Reflectivity data (k, R)\n", NAME_CURRENT_COMP);
Table_Read(&rTable, reflect, 1); /* read 1st block data from file into rTable */
Table_Rebin(&rTable); /* rebin as evenly, increasing array */
if (rTable.rows < 2) Table_Free(&rTable);
Table_Info(rTable);
} else rTable.data = NULL;
if (width == 0) SlabWidth = zwidth;
else SlabWidth = (width+gap)/NH - gap;
if (height == 0) SlabHeight = yheight;
else SlabHeight = (height+gap)/NV - gap;
%}
TRACE
%{
double dt;
if(vx != 0.0 && (dt = -x/vx) >= 0.0)
{
double zmin,zmax, ymin,ymax, zp,yp, y1,z1,t1;
zmax = ((NH*(SlabWidth+gap))-gap)/2;
zmin = -1*zmax;
ymax = ((NV*(SlabHeight+gap))-gap)/2;
ymin = -1*ymax;
y1 = y + vy*dt; /* Propagate to crystal plane */
z1 = z + vz*dt;
t1 = t + dt;
zp = fmod ( (z1-zmin),(SlabWidth+gap) );
yp = fmod ( (y1-ymin),(SlabHeight+gap) );
/* hit a slab or a gap ? */
if (z1>zmin && z1<zmax && y1>ymin && y1<ymax && zp<SlabWidth && yp< SlabHeight)
{
double row,col, sna,snb,csa,csb,vxp,vyp,vzp;
double v, theta0, theta, tmp3;
double tilth,tiltv; /* used to calculate tilt angle of slab */
col = ceil ( (z1-zmin)/(SlabWidth+gap)); /* which slab hit ? */
row = ceil ( (y1-ymin)/(SlabHeight+gap));
if (RH != 0) tilth = asin((col-(NH+1)/2)*(SlabWidth+gap)/RH);
else tilth=0;
if (RV != 0) tiltv = -asin((row-(NV+1)/2)*(SlabHeight+gap)/RV);
else tiltv=0;
/* rotate with tilth and tiltv */
sna = sin(tilth);
snb = sin(tiltv);
csa = cos(tilth);
csb = cos(tiltv);
vxp = vx*csa*csb+vy*snb-vz*sna*csb;
vyp = -vx*csa*snb+vy*csb+vz*sna*snb;
vzp = vx*sna+vz*csa;
/* First: scattering in plane */
/* theta0 = atan2(vx,vz); neutron angle to slab Risoe version */
v = sqrt(vxp*vxp+vyp*vyp+vzp*vzp);
theta0 = asin(vxp/v); /* correct neutron angle to slab */
theta = asin(Q2V*mono_Q/(2.0*v)); /* Bragg's law */
if (theta0 < 0)
theta = -theta;
tmp3 = (theta-theta0)/(MIN2RAD*mos_y);
if (tmp3 < DIV_CUTOFF)
{
double my_r0, k;
double dphi,tmp1,tmp2,tmp4,vratio,phi,cs,sn;
k = V2K*v;
#ifndef OPENACC
if (rTable.data != NULL)
{
my_r0 = r0*Table_Value(rTable, k, 1); /* 2nd column */
}
else
#endif
my_r0 = r0;
if (my_r0 >= 1)
{
#ifndef OPENACC
if (verbose) fprintf(stdout, "Warning: Monochromator_2foc: %s: lowered reflectivity from %f to 0.99 (k=%f)\n",
NAME_CURRENT_COMP, my_r0, k);
#endif
my_r0=0.99;
}
if (my_r0 < 0)
{
#ifndef OPENACC
if (verbose) fprintf(stdout, "Warning: Monochromator_2foc: %s: raised reflectivity from %f to 0 (k=%f)\n",
NAME_CURRENT_COMP, my_r0, k);
#endif
my_r0=0;
}
x = 0.0;
y = y1;
z = z1;
t = t1;
/* reflectivity */
t1 = fabs(my_r0)*exp(-tmp3*tmp3*4*log(2));
if (t1 <= 0) ABSORB;
if (t1 > 1) t1 = 1;
p *= t1; /* Use mosaics */
tmp1 = 2*theta;
cs = cos(tmp1);
sn = sin(tmp1);
tmp2 = cs*vxp - sn*vzp;
vyp = vyp;
/* vz = cs*vz + sn*vx; diese Zeile wurde durch die folgende ersetzt */
tmp4 = vyp/vzp; /* korrigiert den schr�en Einfall aufs Pl�tchen */
vzp = cs*(-vyp*sin(tmp4)+vzp*cos(tmp4)) + sn*vxp;
vxp = tmp2;
/* Second: scatering out of plane.
Approximation is that Debye-Scherrer cone is a plane */
phi = atan2(vyp,vzp); /* out-of plane angle */
dphi = (MIN2RAD*mos_z)/(2*sqrt(2*log(2)))*randnorm(); /* MC choice: */
/* Vertical angle of the crystallite */
vyp = vzp*tan(phi+2*dphi*sin(theta));
vratio = v/sqrt(vxp*vxp+vyp*vyp+vzp*vzp);
vzp = vzp*vratio;
vyp = vyp*vratio; /* Renormalize v */
vxp = vxp*vratio;
/* rotate v coords back */
vx = vxp*csb*csa-vyp*snb*csa+vzp*sna;
vy = vxp*snb+vyp*csb;
vz = -vxp*csb*sna+vyp*snb*sna+vzp*csa;
/* v=sqrt(vx*vx+vy*vy+vz*vz); */
SCATTER;
} /* end if Bragg ok */
} /* End intersect the crystal (if z1) */
} /* End neutron moving towards crystal (if vx)*/
%}
MCDISPLAY
%{
int ih;
for(ih = 0; ih < NH; ih++)
{
int iv;
for(iv = 0; iv < NV; iv++)
{
double zmin,zmax,ymin,ymax;
double xt, xt1, yt, yt1;
zmin = (SlabWidth+gap)*(ih-NH/2.0)+gap/2;
zmax = zmin+SlabWidth;
ymin = (SlabHeight+gap)*(iv-NV/2.0)+gap/2;
ymax = ymin+SlabHeight;
if (RH)
{ xt = zmin*zmin/RH;
xt1 = zmax*zmax/RH; }
else { xt = 0; xt1 = 0; }
if (RV)
{ yt = ymin*ymin/RV;
yt1 = ymax*ymax/RV; }
else { yt = 0; yt1 = 0; }
multiline(5, xt+yt, (double)ymin, (double)zmin,
xt+yt1, (double)ymax, (double)zmin,
xt1+yt1, (double)ymax, (double)zmax,
xt1+yt, (double)ymin, (double)zmax,
xt+yt, (double)ymin, (double)zmin);
}
}
%}
END
|