File: NPI_tof_theta_monitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (214 lines) | stat: -rw-r--r-- 4,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: NPI_tof_theta_monitor
*
* %I
* Written by:  Kim Lefmann
* Date: October 2000
* Version: $Revision: 1.1 $
* Origin: Risoe
* Release: McStas 1.6
* Modified by: Kim Lefmann, October 9, 2001
* Modified by: J Navrátil (NPI Řež), December 10, 2015
*
* Cylindrical (2pi) PSD Time-of-flight monitor.
* 
* %D
* Derived from TOF_cylPSD_monitor.
* Code is extended by the option allowing to define range of scattering angles, therefore creating only a part of the cylinder surface.
* The plot is transposed when compared to TOF_cylPSD_monitor: scattering angles are on the horizontal axis.
*
*
* Example:	TOF_cylPSD_monitor_NPI(nt = 1024, nphi = 960, filename = "Output.dat",
*			radius = 2, yheight = 1.0, tmin = 3e4, tmax = 12e4, amin = 75, amax = 105, restore_neutron = 1)
*
* %P
* INPUT PARAMETERS:
*
* Inherited from NPI_tof_theta_monitor:
* radius:   Cylinder radius (m)
* yheight:  Cylinder height (m)
* nt:       Number of time bins (1)
* tmin:     Beginning of time window (mu-s)
* tmax:     End of time window (mu-s)
* nphi:     Number of angular bins (deg)
* amin:		minimum angle to detect (deg)
* amax:		maximum angle to detect (deg)
* filename: Name of file in which to store the detector image (text)
* restore_neutron: If set, the monitor does not influence the neutron state (1)
*
* Newly added
* amin:	[deg]	minimum of scattering angle to be detected
* amax: [deg]	maximum of scattering angle to be detected
*
* CALCULATED PARAMETERS:
*
* TOF_N:    Array of neutron counts
* TOF_p:    Array of neutron weight counts
* TOF_p2:   Array of second moments
*
* %E
*******************************************************************************/

DEFINE COMPONENT NPI_tof_theta_monitor

SETTING PARAMETERS (string filename=0, radius=1, yheight=0.3, tmin, tmax, amin, amax, restore_neutron=1, verbose=0, int nt=128, int na=90)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ 
SHARE
  %{

  %}
DECLARE
  %{
    DArray2d TOF_N;  
    DArray2d TOF_p;  
    DArray2d TOF_p2; 
    double th2_min;
    double th2_max;
    double dth;
    double dtof;
    double tt_0;
    double tt_1;
  %}
INITIALIZE
  %{	
    th2_min = amin*DEG2RAD;
    th2_max = amax*DEG2RAD;
    dth=(th2_max-th2_min)/na;
    tt_0=tmin*1e-6;
    tt_1=tmax*1e-6;
    dtof=(tt_1-tt_0)/nt;
    
    TOF_N = create_darr2d(na, nt);
    TOF_p = create_darr2d(na, nt);
    TOF_p2 = create_darr2d(na, nt);
    
    if (verbose) {
      printf("%s: range 2theta=(%g,%g), time(%g,%g)\n",NAME_CURRENT_COMP,amin,amax,tmin/1000,tmax/1000);
    }

    // Use instance name for monitor output if no input was given
    if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
  %}
TRACE
  %{
    int i,j;
    double t0,t1,theta2;
    double cos2;
    int cross=cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight);
    
    /* don't allow intersections with top/bottom cylinder walls
       only neutrons from inside are allowed 
    */
    if ( (cross!=1) ||  (t0>0) || (t1<0) ) {
      p=0;
    } else {
      PROP_DT(t1);
      
      /* Calculate pixel */
      if (fabs(y)<(0.5*yheight)) {
	cos2=z/sqrt(radius*radius+y*y);
	theta2=acos(cos2);
	if (theta2>th2_min && theta2< th2_max) {
	  i = (int)floor((theta2-th2_min)/dth+0.5);
	  j = (int)floor((t-tt_0)/dtof+0.5);
	  if ( j>=0 && j<nt && i>=0 && i<na ) {
	    double p2=p*p;
	    #pragma acc atomic
	    TOF_N[i][j] = TOF_N[i][j] + 1;
	    #pragma acc atomic
	    TOF_p[i][j] = TOF_p[i][j] + p;
	    #pragma acc atomic
	    TOF_p2[i][j] = TOF_p2[i][j] + p2;
	  } else {
	  }
	}
      }
    }
    if (restore_neutron) {
      RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
    }
  %}
SAVE
  %{
    DETECTOR_OUT_2D(
        "Cylindrical monitor ToF x 2theta",
        "Scattering angle [deg]",
	"Time-of-flight [\\gms]",
        amin, amax, tmin, tmax, 
        na, nt,
        &TOF_N[0][0],&TOF_p[0][0],&TOF_p2[0][0],
        filename);
  %}

FINALLY
  %{
  destroy_darr2d(TOF_N);
  destroy_darr2d(TOF_p);
  destroy_darr2d(TOF_p2);
  %}

MCDISPLAY
%{
  magnify("y");
  circle("xz", 0,0,0,radius);
%}

END