1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: PSD_Pol_monitor
*
* %I
* Written by: Alexander Backs, based on PSD_monitor by K. Lefmann
* Date: 2022
* Origin: ESS
*
* Position-sensitive monitor.
*
* %D
* An (n times m) pixel PSD monitor, measuring local polarisation as function of x,y coordinates.
*
* Example: PSD_Pol_monitor(xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1, nx=90, ny=90, my=1, filename="Output.psd")
*
* %P
* INPUT PARAMETERS:
*
* xmin: [m] Lower x bound of detector opening
* xmax: [m] Upper x bound of detector opening
* ymin: [m] Lower y bound of detector opening
* ymax: [m] Upper y bound of detector opening
* xwidth: [m] Width of detector. Overrides xmin, xmax
* yheight: [m] Height of detector. Overrides ymin, ymax
* nx: [1] Number of pixel columns
* ny: [1] Number of pixel rows
* filename: [string] Name of file in which to store the detector image
* restore_neutron: [1] If set, the monitor does not influence the neutron state
* nowritefile: [1] If set, monitor will skip writing to disk
* mx: [1] Define the projection axis along which the polarizatoin is evaluated, x-component
* my: [1] Define the projection axis along which the polarizatoin is evaluated, y-component
* mz: [1] Define the projection axis along which the polarizatoin is evaluated, z-component
*
* CALCULATED PARAMETERS:
*
* PSDpol_N: [] Array of neutron counts
* PSDpol_p: [] Array of neutron weighted polarization
* PSDpol_p2: [] Array of standard deviation of weighted polarization
*
* %E
*******************************************************************************/
DEFINE COMPONENT PSD_Pol_monitor
SETTING PARAMETERS (int nx=90, int ny=90, string filename=0,
xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, xwidth=0, yheight=0,
restore_neutron=0, int nowritefile=0,
mx=0, my=0, mz=0)
SHARE %{
%}
DECLARE
%{
DArray2d PSDpol_N;
DArray2d PSDpol_p;
DArray2d PSDpol_p2;
DArray2d PSDpsum;
char titlestring[128];
%}
INITIALIZE
%{
// Check that input parameteters makes sense
if (mx==0 && my==0 && mz==0) {
fprintf(stderr, "Pol_monitor: %s: NULL vector defined!\n"
"ERROR (mx, my, mz). Exiting",
NAME_CURRENT_COMP);
exit(1);
}
if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; }
if (yheight > 0) { ymax = yheight/2; ymin = -ymax; }
if ((xmin >= xmax) || (ymin >= ymax)){
printf("PSD_monitor: %s: Null detection area !\n"
"ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting",
NAME_CURRENT_COMP);
exit(-1);
}
sprintf(titlestring, "Polarisation monitor m=(%g %g %g) %s", mx, my, mz, NAME_CURRENT_COMP);
NORM(mx, my, mz);
PSDpol_N = create_darr2d(nx, ny);
PSDpol_p = create_darr2d(nx, ny);
PSDpol_p2 = create_darr2d(nx, ny);
PSDpsum = create_darr2d(nx,ny);
// Use instance name for monitor output if no input was given
if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}
TRACE
%{
PROP_Z0;
double pol_proj = mx*sx + my*sy + mz*sz; //scalar_prod(mx, my, mz, sx, sy, sz);
if(fabs(pol_proj)>1) {
if (fabs(pol_proj)<1+FLT_EPSILON){
pol_proj /= fabs(pol_proj);
}
else{
ABSORB;
}
}
if (x>xmin && x<xmax && y>ymin && y<ymax){
int i = floor((x - xmin)*nx/(xmax - xmin));
int j = floor((y - ymin)*ny/(ymax - ymin));
double ppol = p*pol_proj;
double ppol2 = ppol*pol_proj;
PSDpol_N[i][j] += 1;
PSDpol_p[i][j] += ppol;
PSDpol_p2[i][j] += ppol2;
PSDpsum[i][j] += p;
SCATTER;
}
if (restore_neutron) {
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
}
%}
SAVE
%{
#ifdef USE_MPI
if (mpi_node_count>1) {
mc_MPI_Sum(&PSDpol_p[0][0], (int)nx*ny);
mc_MPI_Sum(&PSDpol_p2[0][0], (int)nx*ny);
mc_MPI_Sum(&PSDpol_N[0][0], (int)nx*ny);
mc_MPI_Sum(&PSDpsum[0][0], (int)nx*ny);
}
#endif /* USE_MPI */
if (!nowritefile) {
for (int i=0;i<nx;i++){
for (int j=0;j<ny;j++){
if (PSDpsum[i][j] && PSDpol_N[i][j]){
PSDpol_p[i][j] /= PSDpsum[i][j];
PSDpol_p2[i][j] /= PSDpsum[i][j];
}
}
}
DETECTOR_OUT_2D(
"PSD Pol monitor",
"X position [cm]",
"Y position [cm]",
xmin*100.0, xmax*100.0, ymin*100.0, ymax*100.0,
nx, ny,
&PSDpol_N[0][0],&PSDpol_p[0][0],&PSDpol_p2[0][0],
filename);
}
%}
FINALLY
%{
destroy_darr2d(PSDpol_N);
destroy_darr2d(PSDpol_p);
destroy_darr2d(PSDpol_p2);
destroy_darr2d(PSDpsum);
%}
MCDISPLAY
%{
multiline(5,
(double)xmin, (double)ymin, 0.0,
(double)xmax, (double)ymin, 0.0,
(double)xmax, (double)ymax, 0.0,
(double)xmin, (double)ymax, 0.0,
(double)xmin, (double)ymin, 0.0);
%}
END
|