File: PerfectCrystal.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (840 lines) | stat: -rw-r--r-- 27,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2015, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: PerfectCrystal
*
* %I
* Written by: Markus Appel
* Date: 2015-12-21
* Origin: ILL / FAU Erlangen-Nuernberg
* Based on a perfect crystal component by: Miguel A. Gonzalez, A. Dianoux June 2013 (ILL)
*
* Changelog:
* Version 1.1
*  - BUGFIX: correct neutron energy shift in Doppler mode
*  - added option 'debyescherrer' to select analyzer geometry
*  - added option 'facette' to approximate analyzer sphere by small, flat crystals
*
* Version 1.0
*  - inital release
*
*
* %D
* Perfect crystal component, primarily for use as monochromator and analyzer in
* backscattering spectrometers. Reflection from a single Bragg reflex of a flat or
* spherical surface is simulated using a Darwin, Ewald or Gaussian profile. Doppler
* movement of the monochromator is supported as well.
*
* Orientation of the crystal surface is *different* from other monochromator components!
* Gravitational energy shift for tall analyzers should work in principle, but it not tested yet.
* See the parameter description on how to define the geometry and properties.
*
* [1] Website for Backscattering Spectroscopy: http://www.ill.eu/sites/BS-review/index.htm
*
* Examples:
* IN16B (ILL) Si111 large angle analyzers (approximate dimensions):
* PerfectCrystal(radius=2, lambda=6.2708, sigma=0.24e-3,
*                ttmin=40, ttmax=165, phimin=-45, phimax=+45, centerfocus=1)
*
* IN16B (ILL) Si111 Doppler monochromator:
* PerfectCrystal(radius=2.165, lambda=6.2708, sigma=0.24e-3,
*                width = 0.500, height = 0.250, centerfocus=0,
*                speed = 4.7, amplitude = 0.075, exclusive=1)
*
* %P
* (A) Size, shape and position:
* =============================
* radius: [m]                  Radius of curvature, set to 0 for a flat surface. Default: 0
* centerfocus: [0/1]           Component origin is the center of the analyzer sphere if 1, if set to 0 the origin is on the analyzer surface. Default: 0
*
* option 1
* ttmin: [deg]                 
* ttmax: [deg]                 analyzer coverage angle in horizontal xz-plane between -180 and 180
* phimin: [deg]                
* phimax: [deg]                vertical analyzer coverage between -90 and 90 (-180 and 180 if debyescherrer==1)
* option 2
* tt0: [deg]                   
* ttwidth: [deg]               horizontal coverage as center and full width
* phi0: [deg]                  
* phiwidth: [deg]              vertical coverage as center and full width
* option 3
* tt0: [deg]                   angular center position in the horizontal plane (only if centerfocus==1)
* width: [m]                   absolute width
* phi0: [deg]                  angular vertical position (only if centerfocus==1)
* height: [m]                  absolute height (only if debyescherrer==0)
*
* debyescherrer: [-180...180]  (0/1)   bend analyzer following a Debye-Scherrer ring along scattering angle tt (twotheta) (phi = 
* facette: [m]                 width of square crystal facettes arranged on the spherical surface (set 0 to disable). Default: 0 Warning: Facettation will fail at the poles along +-y axis.
* facette_xi: [deg]            random misalignemt of each facette. Default: 0
*
* (B) Neutron optics
* ===================
* tau: [A^-1]                  Scattering vector of the reflex (sometimes also called Q...)
* lambda: [A]                  Alternatively to tau: backscattered wavelength
* R0: []                       Peak reflectivity. Default: 1
*
* Ewald/Darwin mode
* dtauovertau: [1]             Plateau width of the Ewald/Darwin curve (see 
* dtauovertau_ext: []          Relative variation of tau (randomized for each trajectory, full width)
* ewald: [0/1]                 Use Ewald curve if 1, Darwin curve if 0. Default: 1 (Ewald)
*
* Gaussian mode
* sigma: [meV]                 Width of the Gaussian reflectivity curve in meV (corresponding to the energy resolution). (The width will be transformed and the Gaussian is actually calculated in k-space.)
*
* Mirror mode
* ismirror: [0/1]              Simply reflect all neutrons if 1. Good for debugging/visualization. Default: 0
*
* (C) Doppler movement for monochromators (sinusoidal speed profile):
* ===================================================================
* speed: [m/s]                 Maximum Doppler speed. The actual monochromator velocity is randomized between -speed and +speed. Default: 0
* amplitude: [m]               Amplitude of the Doppler movement. Default: 0
*
* smartphase: [0/1]            Optimize Doppler phase for better MC efficiency if set to 1. *WARNING:* Experimental option! Always compare to a simulation without smartphase. Better do not use smartwidth with Ewald/Darwin curves due to their endless tails. Default: 0
* smartwidth: [meV]            Half width of the possible energy reflection window for smartphase. Default: 5*sigma OR 10*2*dtauovertau*E0
*
* (D) Miscellaneous
* ==================
* exclusive: [0/1]             If set to 1, absorb all neutrons that missed the monochromator/analyzer surface. Default: 0
* transmit: [0...1]            Monte-Carlo probability of transmitting an event through the monochromator/analyzer surface. (Events with R=1.0 for DarwinE/Ewald curves are always reflected!). Default: 0
*
* Output parameters
* ==================
* tt: [deg]                    Position where the neutron hit (or missed) the analyzer sphere
* phi: [deg]                   Position where the neutron hit (or missed) the analyzer sphere
* xi: [deg]                    Reflection angle between neutron trajectory and analyzer surface normal
* phid: [rad]                  Actual doppler phase during reflection [0,2*PI]
* vd: [m/s]                    Actual doppler speed during reflection
* zd: [m]                      Actual doppler displacement during reflection (zd>0 => displaced towards inc. beam from -z)
* v0: [m/s]                    Backscattered neutron velocity
* E0: [meV]                    Backscattered neutron energy
* R: [0...1]                   Reflectivity value (on Gauss/Darwin/Ewald curve)
* eps: [see 1]                 'abs(y)' from the Darwin/Ewald reflectivity formula 
*
* %E
*******************************************************************************/

DEFINE COMPONENT PerfectCrystal

SETTING PARAMETERS ( ttmin=NAN, ttmax=NAN, tt0=NAN, ttwidth=NAN, width=NAN,
phimin=NAN, phimax=NAN, phi0=NAN, phiwidth=NAN, height=NAN, debyescherrer=0,
facette=0, facette_xi=0, centerfocus=0, radius=0, tau=NAN, lambda=NAN, R0=1.0,
dtauovertau=NAN, dtauovertau_ext=0,
ewald=1,sigma=NAN,ismirror=0,speed=0,amplitude=0,smartphase=0,
smartwidth=NAN, exclusive=0, transmit=0, verbose=0 )

SHARE
%{
// convert between spherical (r,tt,phi) and cartesian (x,y,z) coordinates (angles in deg)
   // debyescherrer swaps axes
   void sph2cart(double *x,double *y,double *z, double r, double tt, double phi, int debyescherrer)
   {
      tt *= DEG2RAD;
      phi *= DEG2RAD;
      if (debyescherrer) {
         double sintt = sin(tt);
         *x = - r * cos(phi) * sintt;
         *y = r * sin(phi) * sintt;
         *z = r * cos(tt);
      } else {
         double cosphi = cos(phi);
         *x = - r * cosphi * sin(tt);
         *y = r * sin(phi);
         *z = r * cosphi * cos(tt);
      }
   }

   /*******************************************************************************
   * grandvec_target_circle: Choose random direction towards target at (x,y,z)
   * with given radius and gaussian area distribution.
   * If radius is zero, choose random direction in full 4PI, no target.
   ******************************************************************************/
   void
   grandvec_target_circle(double *xo, double *yo, double *zo, double *solid_angle,
                  double xi, double yi, double zi, double radius)
   {
     double l2, phi, theta, nx, ny, nz, xt, yt, zt, xu, yu, zu;

     if(radius == 0.0)
     {
       /* No target, choose uniformly a direction in full 4PI solid angle. */
       theta = acos (1 - rand0max(2));
       phi = rand0max(2 * PI);
       if(solid_angle)
         *solid_angle = 4*PI;
       nx = 1;
       ny = 0;
       nz = 0;
       yi = sqrt(xi*xi+yi*yi+zi*zi);
       zi = 0;
       xi = 0;
     }
     else
     {
       double costheta0;
       l2 = xi*xi + yi*yi + zi*zi; /* sqr Distance to target. */
       costheta0 = sqrt(l2/(radius*radius+l2));
       if (radius < 0) costheta0 *= -1;
       if(solid_angle)
       {
         /* Compute solid angle of target as seen from origin. */
           *solid_angle = 2*PI*(1 - costheta0);
       }

       /* Now choose point uniformly on circle surface within angle theta0 */
       double costheta;
       costheta = (1 - fabs(randnorm()*(1 - costheta0)) );

       if (costheta < -1)
         costheta = -1;

       theta = acos(costheta); /* radius on circle */
       phi = rand0max(2 * PI); /* rotation on circle at given radius */
       /* Now, to obtain the desired vector rotate (xi,yi,zi) angle theta around a
          perpendicular axis u=i x n and then angle phi around i. */
       if(xi == 0 && zi == 0)
       {
         nx = 1;
         ny = 0;
         nz = 0;
       }
       else
       {
         nx = -zi;
         nz = xi;
         ny = 0;
       }
     }

     /* [xyz]u = [xyz]i x n[xyz] (usually vertical) */
     vec_prod(xu,  yu,  zu, xi, yi, zi,        nx, ny, nz);
     /* [xyz]t = [xyz]i rotated theta around [xyz]u */
     rotate  (xt,  yt,  zt, xi, yi, zi, theta, xu, yu, zu);
     /* [xyz]o = [xyz]t rotated phi around n[xyz] */
     rotate (*xo, *yo, *zo, xt, yt, zt, phi, xi, yi, zi);
   } /* randvec_target_circle */


%}
DECLARE
%{
   // official output variables
   double tt;
   double phi;
   double xi;
   double phid;
   double vd;
   double zd;
   double v0;
   double vmin;
   double vmax;
   double vperp;
   double E0;
   double R;
   double eps;

   // internal stuff
   double sin_facette_xi;
%}
INITIALIZE
%{
   // checks and balances ...
   if ( radius < 0 )
   {
      MPI_MASTER(fprintf(stderr,
         "PerfectCrystal: %s ERROR: Invalid parameters: negative radius\n",
         NAME_CURRENT_COMP););
      exit(-1);
   }

   //******************************************
   // position and size
   if ( !radius )
   {
      // flat analyzer surface
      if ( isnan(width) || isnan(height) )
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s ERROR: Invalid parameters: Need width and height for radius==0\n",
            NAME_CURRENT_COMP););
            exit(-1);
      }
   }
   else
   {
      // curved analyzer surface

      //******************************************
      // Determine analyzer width

      // ttmin / ttmax
      if ( !isnan(ttmin) && !isnan(ttmax) && isnan(tt0) && isnan(ttwidth) && isnan(width) )
      {
         // all right.
      }
      // tt0 / ttwidth
      else if ( isnan(ttmin) && isnan(ttmax) && !isnan(ttwidth) && isnan(width) )
      {
         if ( isnan(tt0) )
         {
             MPI_MASTER(fprintf(stderr,
               "PerfectCrystal: %s WARNING: Missing parameter: tt0 set to zero\n",
               NAME_CURRENT_COMP););
            tt0 = 0;
         }
         ttmin = tt0 - ttwidth/2.0;
         ttmax = tt0 + ttwidth/2.0;

      }
      // tt0 / width
      else if ( isnan(ttmin) && isnan(ttmax) && isnan(ttwidth) && !isnan(width) )
      {
         if ( isnan(tt0) )
         {
             MPI_MASTER(fprintf(stderr,
               "PerfectCrystal: %s WARNING: Missing parameter: tt0 set to zero\n",
               NAME_CURRENT_COMP););
            tt0 = 0;
         }
         ttwidth = 2.0 * asin( width / 2.0 / radius ) * RAD2DEG;
         ttmin = tt0 - ttwidth/2.0;
         ttmax = tt0 + ttwidth/2.0;
      }
      else
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s ERROR: Invalid parameters: Cannot determine analyzer width/tt\n",
            NAME_CURRENT_COMP););
         exit(-1);
      }

      //******************************************
      // Determine analyzer height

      // phimin / phimax
      if ( !isnan(phimin) && !isnan(phimax) && isnan(phi0) && isnan(phiwidth) && isnan(height) )
      {
         // all right, nothing to do.
      }
      // phi0 / phiwidth
      else if ( isnan(phimin) && isnan(phimax) && !isnan(phiwidth) && isnan(height) )
      {
         if ( isnan(phi0) )
         {
             MPI_MASTER(fprintf(stderr,
               "PerfectCrystal: %s WARNING: Missing parameter: phi0 set to zero\n",
               NAME_CURRENT_COMP););
            phi0 = 0;
         }
         phimin = phi0 - phiwidth/2.0;
         phimax = phi0 + phiwidth/2.0;
      }
      // phi0 / height
      else if ( isnan(phimin) && isnan(phimax) && isnan(phiwidth) && !isnan(height) )
      {
         if ( isnan(phi0) )
         {
             MPI_MASTER(fprintf(stderr,
               "PerfectCrystal: %s WARNING: Missing parameter: phi0 set to zero\n",
               NAME_CURRENT_COMP););
            phi0 = 0;
         }
         phiwidth = 2.0 * asin( height / 2.0 / radius ) * RAD2DEG;
         phimin = phi0 - phiwidth/2.0;
         phimax = phi0 + phiwidth/2.0;
      }
      else
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s ERROR: Invalid parameters: Cannot determine analyzer height/phi\n",
            NAME_CURRENT_COMP););
         exit(-1);
      }
   }

   if ( centerfocus && !radius )
   {
      MPI_MASTER(fprintf(stderr,
         "PerfectCrystal: %s ERROR: Invalid parameters: centerfocus doesn't make sense with radius==0\n",
         NAME_CURRENT_COMP););
      exit(-1);
   }

   //******************************************
   // neutron optics
   if ( !ismirror )
   {
      if ( isnan(lambda) == isnan(tau) )
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s ERROR: Invalid parameters: provide either tau or lambda\n",
            NAME_CURRENT_COMP););
         exit(-1);
      }

      if ( isnan(tau) )
         tau = 4*PI / lambda;

      v0 = tau / 2.0 * K2V;
      E0 = SQR(v0) * VS2E;

      if ( isnan(dtauovertau) == isnan(sigma) )
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s ERROR: Invalid parameters: provide either sigma or dtauovertau, or switch on ismirror\n",
            NAME_CURRENT_COMP););
         exit(-1);
      }
   }
   else
   {
      if ( !isnan(dtauovertau) || !isnan(sigma) )
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s WARNING: dtauovertau and/or sigma is ignored with ismirror==1\n",
            NAME_CURRENT_COMP););
      }
   }


   if ( !( R0>=0 && R0<=1.0 ) )
   {
      MPI_MASTER(fprintf(stderr,
         "PerfectCrystal: %s ERROR: Invalid parameter: R0 must be between 0 and 1\n",
         NAME_CURRENT_COMP););
      exit(-1);
   }

   if ( transmit < 0.0 || transmit > 1.0 )
   {
      MPI_MASTER(fprintf(stderr,
         "PerfectCrystal: %s ERROR: Invalid parameter: transmit must be between 0 and 1\n",
         NAME_CURRENT_COMP););
      exit(-1);
   }

   // transform Gaussian sigma from energy (meV) to neutron velocity (m/s)
   if ( !isnan(sigma) )
      sigma /= 3.29106e-3 * tau;   // constant is hbar/2 in appropriate units

   // transform smartwidth from energy (meV) to neutron velocity (m/s)
   if ( !isnan(smartwidth) )
      smartwidth /= 3.29106e-3 * tau;   // constant is hbar/2 in appropriate units

   // set standard widths for smartphase
   if ( isnan(smartwidth) && !isnan(sigma) )
      smartwidth = 5.0 * sigma;

   if ( isnan(smartwidth) && !isnan(dtauovertau) )
      smartwidth = 10.0 * dtauovertau * v0;

   if ( smartphase && !isnan(dtauovertau) )
   {
       MPI_MASTER(fprintf(stderr,
         "PerfectCrystal: %s WARNING: Using smartphase for ewald/darwin curves is probably a bad idea, because these curves have very long wings which will be cut off!!!\n",
         NAME_CURRENT_COMP););
   }

   if (facette_xi)
   {
      if (facette_xi < 0)
      {
         MPI_MASTER(fprintf(stderr,
            "PerfectCrystal: %s ERROR: facette_xi must be >= 0\n",
            NAME_CURRENT_COMP););
         exit(-1);
      }

      sin_facette_xi = sin(DEG2RAD*facette_xi);
   }

   // talk to the user ...
   if ( verbose )
   {
      #define PRINTVAR(str,val) fprintf(stderr,"%s --- %s : %g\n",NAME_CURRENT_COMP,str,val);
      MPI_MASTER(
         PRINTVAR("ttmin",ttmin);
         PRINTVAR("ttmax",ttmax);
         PRINTVAR("ttwidth",ttwidth);
         PRINTVAR("width",width);
         PRINTVAR("phimin",phimin);
         PRINTVAR("phimax",phimax);
         PRINTVAR("phi0",phi0);
         PRINTVAR("phiwidth",phiwidth);
         PRINTVAR("height",height);
         PRINTVAR("centerfocus",centerfocus);
         PRINTVAR("debyescherrer",debyescherrer);
         PRINTVAR("radius",radius);
         PRINTVAR("facette",facette);
         PRINTVAR("facette_xi",facette_xi);
         PRINTVAR("sin_facette_xi",sin_facette_xi);
         PRINTVAR("tau",tau);
         PRINTVAR("lambda",lambda);
         PRINTVAR("v0",v0);
         PRINTVAR("E0",E0);
         PRINTVAR("dtauovertau",dtauovertau);
         PRINTVAR("dtauovertau_ext",dtauovertau_ext);
         PRINTVAR("ewald",ewald);
         PRINTVAR("R0",R0);
         PRINTVAR("sigma[m/s]",sigma);
         PRINTVAR("ismirror",ismirror);
         PRINTVAR("speed",speed);
         PRINTVAR("amplitude",amplitude);
         PRINTVAR("smartphase",smartphase);
         PRINTVAR("smartwidth[m/s]",smartwidth);
         PRINTVAR("exclusive",exclusive);
      );
   }

%}
TRACE
%{
   double dt1, dt2, q0mod;
   double nx,ny,nz;
   int missed = 0;

   // determine phase of doppler movement
   if ( (speed!=0) && smartphase)
   {
      // do something smart
      vmin = v0 - sqrt(SQR(vx)+SQR(vy)+SQR(vz)) - smartwidth;
      vmax = vmin + 2.0*smartwidth;

      if ( (vmin>speed) || (vmax<-speed) )
         ABSORB;

      if ( vmin < -speed )
         vmin = -speed;

      if ( vmax > speed )
         vmax = speed;

//      fprintf(stderr,"%g  %g\n",vmin,vmax);

      vd = vmin + (vmax-vmin)*rand01();
      phid = acos(vd/speed) + (rand01()<0.5?0:PI);
      zd = amplitude * sin(phid);
      p *= (vmax-vmin) / 2.0 / speed;
   }
   else if ( speed!=0 )
   {
      // random selection of phase
//      phid = rand01() * 2.0 * PI;
//      zd = amplitude * sin(phid);
//      vd = speed * cos(phid);

      // random selection of speed
      phid = acos(randpm1()) + (rand01()<0.5?0:PI);
      vd = speed * cos(phid);
      zd = amplitude * sin(phid);
   }
   else
   {
      // no movement
      zd = 0;
      vd = 0;
   }

   // Propagate to analyzer and determine surface normal
   if ( !radius )
   {
      // flat analyzer, use height and width

      // propoagate to surface
      if (!vz)
         ABSORB;
      dt2 = (-z-zd) / vz;
      PROP_DT(dt2);

      // see if the covered area is hit
      missed = !inside_rectangle(x,y,width,height);

      // surface normal in this case is simple
      nx=0;ny=0;nz=-1;
   }
   else
   {
      // spherical analyzer, use spherical coordinates ...

      // compute neutron path intersection with analyzer sphere
      if ( centerfocus )
         missed = !sphere_intersect(&dt1,&dt2,x,y,z+zd,vx,vy,vz,radius);
      else
         missed = !sphere_intersect(&dt1,&dt2,x,y,z+radius+zd,vx,vy,vz,radius);

      if ( !missed )
      {
         // propoagate to surface
         PROP_DT(dt2);

         // tt (twotheta) is calculated as in IN16B, positive values downstream rightwards
         // select coordinate system depending on 'debyescherrer' switch
         double zprime = z+(centerfocus?0:radius)+zd;
         if (debyescherrer) {
            tt = RAD2DEG * atan2( sqrt(SQR(x)+SQR(y)) , zprime );
            phi = RAD2DEG * atan2(y,-x);
         } else {
            tt = - RAD2DEG * atan2(x,zprime);
            phi = RAD2DEG * asin( y/sqrt( SQR(x) + SQR(y) + SQR(zprime) ) );
         }

         missed = (tt<ttmin || tt>ttmax || phi<phimin || phi>phimax);

         if ( !missed )
         {
            // analyzer surface normal
            if ( facette ) {
               // calculate center of the facette hit
               // always use spherical coordinates with y main axis (as in debyescherrer=0),
               // otherwise the pole will be in the analyzer center!
               // for the sake of confusion, use radians in this part.
               double tt1, ttfacette, ttn, phi1, phifacette, phin;
               if (debyescherrer) {
                  tt1 = - atan2(x,zprime);
                  phi1 = asin( y/sqrt( SQR(x) + SQR(y) + SQR(zprime) ) );
               } else {
                  tt1 = DEG2RAD * tt;
                  phi1 = DEG2RAD * phi;
               }

               phifacette = facette / radius;
               phin = floor( phi1 / phifacette + 0.5 ) * phifacette;
               ttfacette = facette / (radius*cos(phin));
               ttn = floor( tt1 / ttfacette + 0.5 ) * ttfacette;

               nx = cos(phin)*sin(ttn);
               ny = -sin(phin);
               nz = -cos(phin)*cos(ttn);

               if (facette_xi)
               {
                  grandvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nz,sin_facette_xi);
               }
            } else {
               nx = -x;
               ny = -y;
               nz = -z-(centerfocus?0:radius)-zd;
               NORM(nx,ny,nz);
            }
         }
      }
   }

   // Do the reflection
   if ( !missed )
   {
      // velocity vector projected on surface normal
      // in moving doppler frame
      vperp = scalar_prod(vx,vy,vz+vd,nx,ny,nz);

      // angle between surface normal and velocity (only used as output parameter for monitoring)
      xi = RAD2DEG * acos( - vperp / sqrt( SQR(vx) + SQR(vy) + SQR(vz+vd) ) );

      // energy selection
      if (!ismirror)
      {
         if ( !isnan(dtauovertau) )
         {
            // eps is actually abs(y)
            // vperp is negative!
            double this_tau = tau;
            if ( dtauovertau_ext )
            {
               this_tau *= 1.0 + 0.5*dtauovertau_ext*randpm1();
            }

            eps = fabs( 4.0*vperp*V2K/this_tau + 2.0 ) / dtauovertau;

            // Darwin/Ewald curve
            if ( eps > 1 )
            {
               if ( ewald )
               {
                  // energy selection with Ewald curve
                  R = 1.0 - sqrt(SQR(eps)-1.0) / eps;
               }
               else
               {
                  // energy selection with Darwin curve
                  R = eps - sqrt(SQR(eps)-1.0);
                  R *= R;
               }

               R *= R0;
            }
            else
            {
               R = R0;
            }
         }
         else
         {
            // Gauss curve (vperp is negative!)
            eps = fabs(v0 + vperp) / sigma;
            R = exp( -SQR(eps) / 2.0 );

            R *= R0;
         }
      }
      else
      {
         R = 1;
         eps = NAN;
      }

      if ( transmit && (R!=1) && (rand01()<transmit) )
      {
         p *= (1.0 - R) / transmit;
         SCATTER;
      }
      else
      {
         // reflection: vector kf = ki - qmod0  where qmod0 = 2*n*(n dot ki'),
         // n is the surface normal vector and ki' the incident wavevector
         // in the moving frame
         q0mod = 2.0 * vperp;
         // q0mod is now directly in velocity units (and contains energy shift due to Doppler effect!)

         vx -= q0mod*nx;
         vy -= q0mod*ny;
         vz -= q0mod*nz;
         if (R!=1)
            p *= R / (1.0-transmit);

         if (R<1e-10)
            ABSORB;
         else
            SCATTER;
      }

   }
   else if ( !exclusive )
   {
      R=NAN;
      xi=NAN;
      RESTORE_NEUTRON (INDEX_CURRENT_COMP,x, y, z, vx, vy, vz, t, sx, sy, sz, p);
   }
   else
      ABSORB;

%}

MCDISPLAY
%{
   int ttsegments;
   int phisegments;
   int steps;
//   const double centerspheresize = 0.1*radius;

   int i, itt, iphi, istep;
   double phi,tt,dphi,dtt;
   double x1,y1,z1,x2,y2,z2;
   double z0;

   if (debyescherrer) {
      ttsegments = 4;
      phisegments = 20;
      steps = 50;
   } else {
      ttsegments = 10;
      phisegments = 10;
      steps = 30;
   }


   // mark the center with a sphere
//   circle("xy",0,0,0,centerspheresize);
//   circle("xz",0,0,0,centerspheresize);
//   circle("yz",0,0,z0,centerspheresize);

   // draw crystal surface
   if ( radius )
   {
      z0 = (centerfocus ? 0 : radius);

      // curved surface
      dtt = (ttmax - ttmin) / (double)steps;
      dphi = (phimax - phimin) / (double)steps;

      for (itt=0; itt<=ttsegments; itt++) {
         tt = ttmin + (ttmax - ttmin) * (double)itt / (double)ttsegments;
         for (istep=0; istep<steps; istep++) {
            phi = phimin + dphi*istep;
            sph2cart(&x1,&y1,&z1,radius,tt,phi,debyescherrer);
            sph2cart(&x2,&y2,&z2,radius,tt,phi+dphi,debyescherrer);
            line(x1,y1,z1-z0,x2,y2,z2-z0);
         }
      }

      for (iphi=0; iphi<=phisegments; iphi++) {
         phi = phimin + (phimax - phimin) * (double)iphi / (double)phisegments;
         for (istep=0; istep<steps; istep++) {
            tt = ttmin + dtt*istep;
            sph2cart(&x1,&y1,&z1,radius,tt,phi,debyescherrer);
            sph2cart(&x2,&y2,&z2,radius,tt+dtt,phi,debyescherrer);
            line(x1,y1,z1-z0,x2,y2,z2-z0);
         }
      }

      // additional dashed moving one
      if ( amplitude )
      {

         sph2cart(&x1,&y1,&z1,radius,ttmin,phimin,debyescherrer);
         dashed_line(x1,y1,z1-z0-amplitude,x1,y1,z1-z0+amplitude,6);
         sph2cart(&x1,&y1,&z1,radius,ttmax,phimin,debyescherrer);
         dashed_line(x1,y1,z1-z0-amplitude,x1,y1,z1-z0+amplitude,6);
         sph2cart(&x1,&y1,&z1,radius,ttmin,phimax,debyescherrer);
         dashed_line(x1,y1,z1-z0-amplitude,x1,y1,z1-z0+amplitude,6);
         sph2cart(&x1,&y1,&z1,radius,ttmax,phimax,debyescherrer);
         dashed_line(x1,y1,z1-z0-amplitude,x1,y1,z1-z0+amplitude,6);

         for (i=-1;i<=1;i+=2)
         {
            z0 = (centerfocus ? 0 : radius) + i * amplitude;

            for (itt=0; itt<=ttsegments; itt++) {
               tt = ttmin + (ttmax - ttmin) * (double)itt / (double)ttsegments;
               for (istep=0; istep<steps; istep++) {
                  phi = phimin + dphi*istep;
                  sph2cart(&x1,&y1,&z1,radius,tt,phi,debyescherrer);
                  sph2cart(&x2,&y2,&z2,radius,tt,phi+dphi,debyescherrer);
                  dashed_line(x1,y1,z1-z0,x2,y2,z2-z0,1);
               }
            }

            for (iphi=0; iphi<=phisegments; iphi++) {
               phi = phimin + (phimax - phimin) * (double)iphi / (double)phisegments;
               for (istep=0; istep<steps; istep++) {
                  tt = ttmin + dtt*istep;
                  sph2cart(&x1,&y1,&z1,radius,tt,phi,debyescherrer);
                  sph2cart(&x2,&y2,&z2,radius,tt+dtt,phi,debyescherrer);
                  dashed_line(x1,y1,z1-z0,x2,y2,z2-z0,1);
               }
            }
         }
      }

   }
   else
   {
      // flat surface
      rectangle("xy",0.0,0.0,0.0,width,height);
      // additional moving one
      if ( amplitude )
      {
         dashed_line(+width/2.0,+height/2.0,-amplitude,+width/2.0,+height/2.0,+amplitude,6);
         dashed_line(+width/2.0,-height/2.0,-amplitude,+width/2.0,-height/2.0,+amplitude,6);
         dashed_line(-width/2.0,+height/2.0,-amplitude,-width/2.0,+height/2.0,+amplitude,6);
         dashed_line(-width/2.0,-height/2.0,-amplitude,-width/2.0,-height/2.0,+amplitude,6);
         for (i=-1;i<=1;i+=2)
            rectangle("xy",0.0,0.0,i * amplitude,width,height);
      }
   }

%}

END