1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
/****************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Pol_bender_tapering
*
* %I
* Written by: Erik Bergbaeck Knudsen (erkn@fysik.dtu.dk)
* Date: June 2012
* Origin: DTU Physics
*
* Polarising bender.
*
* %D
*
* A component modelling a set of identical blades bent to form a multcihannel (nslits)
* bender. The bender has a cylindrically curved entry plane (Will be extended to also
* allow a flat entry plane).
*
* The bender may also be tapered such that it can have focusing or defocusing porperties.
* This may be specified through the "channel_file"-parameter, which points to a data file
* in which the individual channels are defined by an entry- and an exit-width.
*
* The file format for channel file columns:
* > #d-spacing1 d-spacing2 l_spacer d-coating1 d-coating2
* > 1e-3 0.8e-3 1e-5 1e-9 1e-9
*
* Each blades is considered coated with a reflecting coating, whose thickness is defined in the
* latter two columsn of the channel data file.
*
* Coating reflectivities are read from
* another data file with separate reflectivities for up and down spin. When a neutron ray hits a blade
* the polarization vector associated with the ray is decomposed into spin-up and down
* probablities, which in turn determines the overall reflectivity for this ray on the mirror.
* Furthermore the probabilities are used to also reconstruct the polarization vector of the reflected
* ray.
*
* File format for the reflectivity file:
* > #parameter = m
* > q/m R(up) R(down)
*
* The effect of spacers inside the channels is modelled by absorption only. The depth of the spacers
* in a channel is considered constant for one channel (set in the channel data file), the number of
* them is constant across all channels and is an input parameter to the component.
*
* %P
*
* INPUT PARAMETERS:
*
* xwidth: [m] Width at the bender entry. Currently unsupported.
* yheight: [m] Height at the bender entry.
* length: [m] Length of blades that make up the bender.
* d_substrate: [m] Thickness of the substrate.
* entry_radius: [m] Radius of curvature of the entrance window.
* radius: [m] Curvature of a single plate/polarizer. +:curve left/-:right
* nslit: [1] Number of slits in the bender
* channel_file: [ ] File name of file containing channel data. such as spacer widths etc. (see above for format)
* reflect_file: [ ] File name of file containing reflectivity data parametrized either by q or m.
* sigma_abs: [barn] Absorption per unit cell at v=2200 m/s of spacers. Defaults to literature value for Al.
* V0: [AA^3] Volume of unit cell for spacers. Defaults to Al.
* nspacer: [ ] Number of spacers per channel.
* G: [m/s^2] Magnitude of gravitation.
* debug: [ ] If > 0 print out some internal parameters.
*
* %L
*
* %E
****************************************************************************/
DEFINE COMPONENT Pol_bender_tapering
SETTING PARAMETERS (string channel_file="channel.dat", xwidth=0, yheight, length,
d_substrate, entry_radius=10, radius=100, G=9.8, int nslit=1, int debug=1,
string reflect_file=NULL, sigma_abs=0.231, V0=66.4, nspacer=5)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "pol-lib"
%include "ref-lib"
%include "read_table-lib"
#ifndef pol_reflect_spin_h
#define pol_reflect_spin_h 1
/***************************************************************************
* Calculate new spin vector after reflection in a surface with reflectivities
* Rup and Rdown referring to the direction of the vector (mx,my,mz)
* m is assumed to have unit length, - if zero the default m=(0,1,0) is used.
* returns the fraction of intensity thus reflected (if Rup+Rdown<1)
**************************************************************************/
double pol_reflect_spin_ref(double Rup, double Rdown, double *sx, double *sy, double *sz, double mx, double my, double mz){
double pm,ps1,ps2,pin;
double s1x,s1y,s1z,s2x,s2y,s2z;
if (mx==my && my==mz && mz==0.0){
pm=*sy;
}else{
pm=scalar_prod(*sx,*sy,*sz,mx,my,mz);
/*find two vectors perpendicular to m*/
vec_prod(s1x,s1y,s1z,mx,my,mz,1.0,1.0,1.0);
NORM(s1x,s1y,s1z);
vec_prod(s2x,s2y,s2z,mx,my,mz,s1x,s1y,s1z);
vec_prod(s1x,s1y,s1z,mx,my,mz,s2x,s2y,s2z);
ps1=scalar_prod(*sx,*sy,*sz,s1x,s1y,s1z);
ps2=scalar_prod(*sx,*sy,*sz,s2x,s2y,s2z);
}
/*the fractions of "up" and "down" neutrons*/
double phiu=((pm)+1)/2.0;
double phid=(1-(pm))/2.0;
/*the relative fractions generate the new fraction*/
if(phiu*Rup+phid*Rdown){
pm=(phiu*Rup - phid*Rdown)/(phiu*Rup+phid*Rdown);
pin=phiu*Rup+phid*Rdown;
//printf("pin: %g\n",pin);
}else{
pm=0;
pin=0;
}
if (mx==my && my==mz && mz==0.0){
*sy=pm;
}else{
/*this may be wrong*/
*sx=pm*mx + ps1*s1x + ps2*s2x;
*sy=pm*my + ps1*s1y + ps2*s2y;
*sz=pm*mz + ps1*s1z + ps2*s2z;
NORM(*sx,*sy,*sz);
}
return pin;
}
/***************************************************************************
* Calculate new spin vector after reflection in a surface with reflectivities
* Rup and Rdown referring to the y-axis (up)
*****************************************************************/
double pol_reflect_spin(double Rup,double Rdown, double *sx, double *sy, double *sz){
return pol_reflect_spin_ref(Rup, Rdown, sx, sy, sz, 0.0, 0.0, 0.0);
}
#endif
#ifndef to_channel_frame
#define to_channel_frame(rot,offset) \
do {\
mccoordschange(offset,rot,&x,&y,&z,&vx,&vy,&vz,&sx,&sy,&sz);\
}while(0);
#endif
#ifndef from_channel_frame
#define from_channel_frame(rot,offset)\
do {\
double cx,cy,cz;\
Rotation trot;\
rot_transpose(rot,trot);\
coords_get(offset,&cx,&cy,&cz);\
x=x-cx;\
y=y-cy;\
z=z-cz;\
mccoordschange_polarisation(trot,&x,&y,&z);\
mccoordschange_polarisation(trot,&vx,&vy,&vz);\
mccoordschange_polarisation(trot,&sx,&sy,&sz);\
}while(0);
#endif
%}
DECLARE
%{
t_Table T;
t_Table R;
t_Table C;
int by_q;
double rw;
double rw_q;
double phi;
int bounce;
%}
INITIALIZE
%{
int status,i;
if(xwidth && entry_radius){
fprintf(stderr,"Warning (%s): Both xwidth and entry_radius set. Entry_radius overrides xwidth\n",NAME_CURRENT_COMP);
xwidth=0;
}
if ( (status=Table_Read(&(T),channel_file,0))==-1){
fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",channel_file,NAME_CURRENT_COMP);
exit(-1);
}
/*compute total opening and exit face of bender*/
rw=(T.rows+1)*d_substrate;/*the substrate thickness * number of blades*/
rw_q=(T.rows+1)*d_substrate;/*the substrate thickness * number of blades*/
for (i=0;i<T.rows;i++){
rw+=T.data[i*T.columns + 0];/*the channel spacing*/
rw+=T.data[i*T.columns + 3];/*the positive side coating*/
rw+=T.data[i*T.columns + 4];/*the negative side coating*/
rw_q+=T.data[i*T.columns + 1];/*channel exit spacing*/
rw_q+=T.data[i*T.columns + 3];/*the positive side coating*/
rw_q+=T.data[i*T.columns + 4];/*the negative side coating*/
}
/*angular opening*/
phi=rw/entry_radius;
if ( (status=Table_Read(&(R),reflect_file,0))==-1){
fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",reflect_file?reflect_file:"",NAME_CURRENT_COMP);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(R.header,"parameter");
if (strstr(header_parsed[0],"m")){
by_q=0;
}else{
by_q=1;
}
/*Now do computations on the channel edge curvatures and store in a table
*We need 2 cols for entry position, 2 for q (flat face exit pos), 2 for centre of curvature and 2 for exit pos
* After this the channel details can be gotten by Table_index(C,coli,channel_no) and Table_Index(C,coli,channel_no+)
* where the latter is the edge on the positive side.*/
/*initialize the table*/
Table_Init(&(C),8,T.rows);
%}
TRACE
%{
int status,channel_no;
double t0,t1;
double rx,dx1,dx2;
double xo,yo,zo,vox,voy,voz;
double outer_radius;
double dx1_q,dx2_q;
/*propagate to entry surface (cylinder!)*/
/*check which channel we're in, if any*/
bounce=0;
channel_no=0;
if(xwidth){
PROP_Z0;
if ( y<-0.5*yheight || y>0.5*yheight ||x<-0.5*xwidth || x>0.5*xwidth) {
/*Missed flat face bender. Leave neutron be*/
channel_no=-1;
RESTORE_NEUTRON(INDEX_CURRENT_COMP,x,y,z,vx,vy,vz,t,sx,sy,sz,p);
}
fprintf(stderr,"Error(%s): flat face bender tapering is not supported yet. Please use a large entry_raidus instead. Aborting.\n", NAME_CURRENT_COMP);
exit(-1);
}else if(entry_radius){
status=cylinder_intersect(&t0,&t1,x,y,z-(-entry_radius),vx,vy,vz,entry_radius,1000);
if (entry_radius>0){
PROP_DT(t1);
}else{
PROP_DT(t0);
}
xo=x;yo=y;zo=z;
vox=vx;voy=vy;voz=vz;
if (!status || t1<0 || y<-0.5*yheight || y>0.5*yheight ||x<entry_radius*sin(-0.5*rw/entry_radius) || x>entry_radius*sin(0.5*rw/entry_radius)){
/*Missed curved face bender. leave neutron be*/
channel_no=-1;
RESTORE_NEUTRON(INDEX_CURRENT_COMP,x,y,z,vx,vy,vz,t,sx,sy,sz,p);
}
}
if(channel_no!=-1){
/*So we actually hit the bender face - proceed*/
double cphi, sphi, d1,d2, p0x,p0z, p1x,p1z, p2x,p2z, c1x,c1z, c2x,c2z, q0x,q0z, q1x,q1z, q2x,q2z, r1x,r1z, r2x,r2z;
if (entry_radius) {
channel_no=0;
/*offsets of channel entry - initialize
* outer edge (dx2) : bender end + 1 substrate thickness + coating (outer)
* inner edge (dx1) : outer edge + channel width*/
dx2 = -0.5*rw + d_substrate + T.data[channel_no*T.columns + 3];
if ( x< dx2){
/*hit first substrate*/
ABSORB;
}
dx1 = dx2 +T.data[channel_no*T.columns + 0];
cphi=cos(length/radius);
sphi=sin(length/radius);
q0x=radius*(1-cos(length/radius));/*exit point of bender centre*/
q0z=radius*(sin(length/radius));
/*the plates will end on a cirle of this radius*/
outer_radius=entry_radius+length;//sqrt(q0x*q0x + (q0z+entry_radius)*(q0z+entry_radius));
p2x= entry_radius*sin(dx2/entry_radius); /*channel entry coordinates*/
p2z= entry_radius*(cos(dx2/entry_radius)-1);
p1x= entry_radius*sin(dx1/entry_radius);
p1z= entry_radius*(cos(dx1/entry_radius)-1);
dx2_q = -0.5*rw_q + d_substrate + T.data[channel_no*T.columns + 3];
/*add the offset due to blade curvature to dx2_q*/
//dx2_q += asin(q0x/outer_radius)*outer_radius;
dx1_q = dx2_q + T.data[channel_no*T.columns + 1];
q2x= q0x - dx2_q*(-cphi);/*exit point of outer channel edge (without correction for channel blade length)*/
q2z= q0z - dx2_q*(sphi);
q1x= q0x - dx1_q*(-cphi);/*exit point of inner channel edge (without correction for channel blade length)*/
q1z= q0z - dx1_q*(sphi);
#ifdef MCDEBUG
printf("%sPTS: %i %g %g %g %g %g %g %g %g %g %g\n",NAME_CURRENT_COMP,channel_no,p1x,p1z,p2x,p2z,q1x,q1z,q2x,q2z,q0x,q0z);
#endif
while ( !( x> entry_radius*sin(dx2/entry_radius) && x< entry_radius*sin(dx1/entry_radius) ) ){
channel_no++;
if(channel_no>T.rows){
//printf("oops I've missed all channels ");
//printf("%lld %g %g %g %g %g %g %g\n",mcget_run_num(),x,y,z,vx,vy,vz,p);
ABSORB;
}
/*offsets of channel entry - update
* outer edge (dx2) : previous inner edge + 1 coating (inner) + substrate thickness + coating (outer)
* inner edge (dx1) : outer edge + channel width*/
dx2=dx1 + T.data[channel_no*T.columns + 3] + d_substrate + T.data[channel_no*T.columns + 4];
/*now check if we've hit the blade*/
//if ( x< dx2 && x>dx1 ){
/*hit a substrate*/
// ABSORB;
//}
dx1=dx2 + T.data[channel_no*T.columns + 0];
dx2_q= dx1_q + d_substrate + T.data[channel_no*T.columns + 3]+ T.data[channel_no*T.columns + 4];
dx1_q= dx2_q+T.data[channel_no*T.columns + 1];
p2x= entry_radius*sin(dx2/entry_radius);
p2z= entry_radius*(cos(dx2/entry_radius)-1);
p1x= entry_radius*sin(dx1/entry_radius);
p1z= entry_radius*(cos(dx1/entry_radius)-1);
q2x= q0x - dx2_q*(-cphi);/*exit point of outer channel edge (without correction for channel blade length)*/
q2z= q0z - dx2_q*(sphi);
q1x= q0x - dx1_q*(-cphi);/*exit point of inner channel edge (without correction for channel blade length)*/
q1z= q0z - dx1_q*(sphi);
q1x=outer_radius*sin(dx1_q/outer_radius);
q1z=outer_radius*(cos(dx1_q/outer_radius))-entry_radius;
q2x=outer_radius*sin(dx2_q/outer_radius);
q2z=outer_radius*(cos(dx2_q/outer_radius))-entry_radius;
double h1,D1,h2,D2;
/*helper variables to to compute intersection points of circles*/
/*We need to put h1 and h2 to the side the bender is curving to - hence the sign operation*/
D1=sqrt( (q1x-p1x)*(q1x-p1x) + (q1z-p1z)*(q1z-p1z) ) ;
h1=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D1*D1);
D2=sqrt( (q2x-p2x)*(q2x-p2x) + (q2z-p2z)*(q2z-p2z) ) ;
h2=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D2*D2);
c1x= p1x + 0.5*(q1x-p1x) + h1/D1 * (q1z-p1z); /*these are the centers around which the channel edges actually rotate*/
c1z= p1z + 0.5*(q1z-p1z) + h1/D1 * -(q1x-p1x); /*positive*/
c2x= p2x + 0.5*(q2x-p2x) + h2/D2 * (q2z-p2z); /*negative*/
c2z= p2z + 0.5*(q2z-p2z) + h2/D2 * -(q2x-p2x);
/*now find the exit points to place exit plane*/
r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);
r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);
r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);
r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);
double nx,ny,nz;
vec_prod(nx,ny,nz,0.0,1.0,0.0,r2x-r1x,0,r2z-r1z);
//printf("DEBUG: %d %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n",channel_no,p1x,p1z,p2x,p2z, r1x,r1z,r2x,r2z, q1x,q1z,q2x,q2z,outer_radius, q0x,q0z, asin(q0x/outer_radius)*outer_radius, c1x,c1z,c2x,c2z,dx1,dx2,dx1_q,dx2_q);
}
/*set a scatter upon entry*/
SCATTER;
}else{
/*so it is a flat face bender*/
channel_no=0;
dx2=-0.5*rw;
dx1=dx2+T.data[channel_no*T.columns + 0] + T.data[channel_no*T.columns + 4] + T.data[channel_no*T.columns + 3];
while (!(x>dx2 && x<dx1)){
channel_no++;
dx2=dx1;
dx1+=T.data[channel_no*T.columns + 0] + T.data[channel_no*T.columns + 4] + T.data[channel_no*T.columns + 3];
}
rx=(dx1+dx2)*0.5;
SCATTER;
}
/*now the channel number is known. Given the central curvature of bender we may compute the placement of inner and outer cylinders. */
/*Some helper points and variables:
q is the end point of the uncurved blade.
r is the end point of the curved blade
we get the offset of the curved endpoint from the central blade, and apply it to vectors
parallel and perpendicular to QP.*/
q1x=outer_radius*sin(dx1_q/outer_radius);
q1z=outer_radius*(cos(dx1_q/outer_radius))-entry_radius;
q2x=outer_radius*sin(dx2_q/outer_radius);
q2z=outer_radius*(cos(dx2_q/outer_radius))-entry_radius;
double L1,L2;
L1=sqrt( (q1x-p1x)*(q1x-p1x) + (q1z-p1z)*(q1z-p1z) ) ;
L2=sqrt( (q2x-p2x)*(q2x-p2x) + (q2z-p2z)*(q2z-p2z) ) ;
r1x=p1x + q0z * (q1x-p1x)/L1 + q0x* (q1z-p1z)/L1;
r1z=p1z + q0z * (q1z-p1z)/L1 + q0x* -(q1x-p1x)/L1;
r2x=p2x + q0z * (q2x-p2x)/L2 + q0x* (q2z-p2z)/L2;
r2z=p2z + q0z * (q2z-p2z)/L2 + q0x* -(q2x-p2x)/L2;
double h1,D1,h2,D2;
/*helper variables to to compute intersection points of circles*/
/*We need to put h1 and h2 to the side the bender is curving to - hence the sign operation*/
D1=sqrt( (r1x-p1x)*(r1x-p1x) + (r1z-p1z)*(r1z-p1z) ) ;
h1=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D1*D1);
D2=sqrt( (r2x-p2x)*(r2x-p2x) + (r2z-p2z)*(r2z-p2z) ) ;
h2=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D2*D2);
c1x= p1x + 0.5*(r1x-p1x) + h1/D1 * (r1z-p1z); /*these are the centers around which the channel edges actually rotate*/
c1z= p1z + 0.5*(r1z-p1z) + h1/D1 * -(r1x-p1x); /*positive*/
c2x= p2x + 0.5*(r2x-p2x) + h2/D2 * (r2z-p2z); /*negative*/
c2z= p2z + 0.5*(r2z-p2z) + h2/D2 * -(r2x-p2x);
/*now find the exit points to place exit plane*/
/* r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);*/
/* r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);*/
/**/
/* r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);*/
/* r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);*/
double nx,ny,nz;
vec_prod(nx,ny,nz,0.0,1.0,0.0,r2x-r1x,0,r2z-r1z);
#ifdef MCDEBUG
printf("%sPTS2: %d %g %g %g %g\n",NAME_CURRENT_COMP,channel_no,r1x,r1z,r2x,r2z);
#endif
//printf("DEBUG: %d %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n",channel_no,p1x,p1z,p2x,p2z, r1x,r1z,r2x,r2z, q1x,q1z,q2x,q2z,outer_radius, q0x,q0z, asin(q0x/outer_radius)*outer_radius, c1x,c1z,c2x,c2z);
int exit=0;
int coat1,coat2; /*are the blades coated at all*/
coat1=(Table_Index(T,channel_no,3)>0.0);/*positive side coating*/
coat2=(Table_Index(T,channel_no,4)>0.0);/*negative side coating*/
do {
int i1,i2,ic,ie,cyl;
double t10,t11,t20,t21,tc,te;
/*initialize times to seomthing known*/
t10=t11=0;
t20=t21=0;
te=0;
i1=cylinder_intersect(&t10,&t11,x-c1x,y,z-c1z,vx,vy,vz,radius,yheight);
i2=cylinder_intersect(&t20,&t21,x-c2x,y,z-c2z,vx,vy,vz,radius,yheight);
ie=plane_intersect(&te,x,y,z,vx,vy,vz,nx,ny,nz,r1x,0,r1z);
/*catch the different cases*/
if ( (!ie) && ( !i1 && !i2) ){
fprintf(stderr,"Pol_bender (%s): Neutron xyz=(%g %g %g), v=(%g %g %g) cannot exit the bender or does not intersect either edge cylinder\n",NAME_CURRENT_COMP,x,y,z,vx,vy,vz);
ABSORB;/*this should really not happen*/
}
/*find the smallest strictly positive intersection time of te, t21 and t10*/
double tt=FLT_MAX;
/*first we mask strictly nonpositive times with a very large number (FLT_MAX)*/
t10=t10<=0?FLT_MAX:t10;
t21=t21<=0?FLT_MAX:t21;
te=te<=0?FLT_MAX:te;
/*if radius<0 the edge on the positve x side becomes the outer one.
* This means we chould compare t11 with t20, so in that case swap, and the algorithm should work*/
if (radius<0){
t10=t11;
t21=t20;
}
enum{TOPBOTTOM,ENDFACE,CYL,CYL2,CYL1,UNKNOWN} branch;
if (i2 &&(t21 <t10)){
tt=t21;cyl=2;
branch=CYL;
}else if (i1){
tt=t10;cyl=1;
branch=CYL;
}
if (te<tt){
tt=te;cyl=0;
branch=ENDFACE;
}
if (i2&24){
/* bitwise and with 16+8 to catch exit codes from cylinder_intersect. These mean that
* neutron _exits_ through the top or bottom of the cylinder. Only cyl. 2 needs to be checked
* since by design the neutron is always outside cyl. 1.*/
branch = TOPBOTTOM;
tt=0;
ABSORB;
}
if(tt==FLT_MAX){
tt=0;
branch=UNKNOWN;
fprintf(stderr,"Cannot determine reflection branch: t21=%g, t10=%g ,te=%g\n",t21,t10,te);
ABSORB;
}
switch (branch){
case ENDFACE:
/*exit through channel end - leave neutron be*/
exit=1;
break;
case TOPBOTTOM:
/*exit through top or bottom - leave neutron be*/
exit=1;
break;
case CYL:
/*we bounce on bender wall*/
PROP_DT(tt);
double nx,ny,nz,s,alpha,Q,Rup,Rdown;
if (cyl==1){
/*check if coated*/
if(!coat1){
/*not coated on this side*/
ABSORB;
}
double vox=vx;
double voy=vy;
double voz=vz;
double v=sqrt(scalar_prod(vx,vy,vz,vx,vy,vz));
/*bounce on cylinder 1*/
nx=x-c1x;ny=0;nz=z-c1z;
NORM(nx,ny,nz);
s=scalar_prod(vx,vy,vz,nx,ny,nz);
vx=vx - s*2*nx;
/*vy=vy - s*2*ny;*/
vz=vz - s*2*nz;
/*compute reflectivity based on coating (m=3.2?)*/
alpha=acos(scalar_prod(vx,vy,vz,vox,voy,voz)/v/v);
/* Now compute reflectivity. */
Q = 2.0*sin(alpha/2.0)*sqrt(scalar_prod(vx,vy,vz,vx,vy,vz))*V2K;
if(!by_q){
Q=Q/0.0217; /*convert to m-value by conversion factor 2.17 AA^-1*/
}
Rup=Table_Value(R,Q,1);
Rdown=Table_Value(R,Q,2);
p*=pol_reflect_spin(Rup,Rdown,&sx,&sy,&sz);
}else{
if(!coat2){
/*not coated on this side*/
ABSORB;
}
double vox=vx;
double voy=vy;
double voz=vz;
double v=sqrt(scalar_prod(vx,vy,vz,vx,vy,vz));
/*bounce on cylinder 2*/
nx=x-c2x;ny=0;nz=z-c2z;
NORM(nx,ny,nz);
s=scalar_prod(vx,vy,vz,nx,ny,nz);
vx=vx - s*2*nx;
/*vy=vy - s*2*ny;*/
vz=vz - s*2*nz;
/*compute reflectivity based on coating (m=3.2?)*/
alpha=acos(scalar_prod(vx,vy,vz,vox,voy,voz)/v/v);
/* Now compute reflectivity. */
Q = 2.0*sin(alpha/2.0)*sqrt(scalar_prod(vx,vy,vz,vx,vy,vz))*V2K;
if(!by_q){
Q=Q/0.0217; /*convert to m-value by conversion factor 2.17 AA^-1*/
}
Rup=Table_Value(R,Q,1);
Rdown=Table_Value(R,Q,2);
p*=pol_reflect_spin(Rup,Rdown,&sx,&sy,&sz);
}
/*if trace is set - transform back to bender frame, set SCATTER, and transform back to channel frame again*/
bounce++;
SCATTER;
break;
}
}while (!exit);
/*add spacer absorption*/
double v,pmul;
v=sqrt(scalar_prod(vx,vy,vz,vx,vy,vz));
pmul = exp( - (nspacer*Table_Index(T,channel_no,2)) * (sigma_abs*2200*100/V0/v));
p*=pmul;
SCATTER;
}
%}
MCDISPLAY
%{
/*first draw the outer edges*/
double yh2=yheight/2.0;
int channel_no=0;
int N=16;
if(channel_no!=-1){
/*So we actually hit the bender face - proceed*/
double cphi, sphi, d1,d2, p0x,p0z, p1x,p1z, p2x,p2z, c1x,c1z, c2x,c2z, q0x,q0z, q1x,q1z, q2x,q2z, r1x,r1z, r2x,r2z;
double dx1,dx2,dx1_q,dx2_q;
channel_no=0;
dx2 = -0.5*rw + d_substrate + T.data[channel_no*T.columns + 3];
dx1 = dx2 +T.data[channel_no*T.columns + 0];
dx2_q = -0.5*rw_q + d_substrate + T.data[channel_no*T.columns + 3];
dx1_q = dx2_q + T.data[channel_no*T.columns + 1];
for (channel_no=0;channel_no<T.rows;channel_no++){
if (T.rows>20 && channel_no!=0 && channel_no!=T.rows-1 && channel_no%100!=0){
/*update the relative coordinates of the channel entry and exits but don't actually draw anything*/
dx2=dx1 + T.data[channel_no*T.columns + 3] + d_substrate + T.data[channel_no*T.columns + 4];
dx1=dx2 + T.data[channel_no*T.columns + 0];
dx2_q= dx1_q + d_substrate + T.data[channel_no*T.columns + 3]+ T.data[channel_no*T.columns + 4];
dx1_q= dx2_q+T.data[channel_no*T.columns + 1];
continue;
}
if (entry_radius) {
/*offsets of channel entry - initialize
* outer edge (dx2) : bender end + 1 substrate thickness + coating (outer)
* inner edge (dx1) : outer edge + channel width*/
p2x= entry_radius*sin(dx2/entry_radius); /*channel entry coordinates*/
p2z= entry_radius*(cos(dx2/entry_radius)-1);
p1x= entry_radius*sin(dx1/entry_radius);
p1z= entry_radius*(cos(dx1/entry_radius)-1);
}
q0x=radius*(1-cos(length/radius));/*exit point of bender centre*/
q0z=radius*(sin(length/radius));
cphi=cos(length/radius);
sphi=sin(length/radius);
q2x= q0x - dx2_q*(-cphi);/*exit point of outer channel edge (without correction for channel blade length)*/
q2z= q0z - dx2_q*(sphi);
q1x= q0x - dx1_q*(-cphi);/*exit point of inner channel edge (without correction for channel blade length)*/
q1z= q0z - dx1_q*(sphi);
double h1,D1,h2,D2; /*helper variables to to compute intersection points of circles*/
D1=sqrt( (q1x-p1x)*(q1x-p1x) + (q1z-p1z)*(q1z-p1z) ) ;
h1=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D1*D1);
D2=sqrt( (q2x-p2x)*(q2x-p2x) + (q2z-p2z)*(q2z-p2z) ) ;
h2=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D2*D2);
c1x= p1x + 0.5*(q1x-p1x) + h1/D1 * (q1z-p1z); /*these are the centers around which the channel edges actually rotate*/
c1z= p1z + 0.5*(q1z-p1z) + h1/D1 * -(q1x-p1x); /*positive*/
c2x= p2x + 0.5*(q2x-p2x) + h2/D2 * (q2z-p2z); /*negative*/
c2z= p2z + 0.5*(q2z-p2z) + h2/D2 * -(q2x-p2x);
/*now we know what the circles are - draw N circle segments at +h/2 and -h/2 to mark channels*/
double dl=length/N;
double ro1x,ro1z,ro2x,ro2z;
ro1x=p1x;
ro1z=p1z;
ro2x=p2x;
ro2z=p2z;
multiline(5,ro1x,yh2,ro1z, ro1x,-yh2,ro1z, ro2x,-yh2,ro2z, ro2x,yh2,ro2z, ro1x,yh2,ro1z);
cphi=cos(dl/radius);
sphi=sin(dl/radius);
/*now find the exit points to place exit plane of circle segment*/
r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);
r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);
r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);
r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);
/*loop until exit*/
while (dl<=length){
line(ro1x, yh2,ro1z,r1x, yh2,r1z);
line(ro2x, yh2,ro2z,r2x, yh2,r2z);
line(ro1x,-yh2,ro1z,r1x,-yh2,r1z);
line(ro2x,-yh2,ro2z,r2x,-yh2,r2z);
/*update dl*/
dl+=length/N;
/*store old exit in ro1x etc.*/
ro1x=r1x;
ro1z=r1z;
ro2x=r2x;
ro2z=r2z;
cphi=cos(dl/radius);
sphi=sin(dl/radius);
/*now find the exit points to place exit plane of circle segment*/
r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);
r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);
r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);
r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);
}
/*draw the last segment*/
line(ro1x, yh2,ro1z,r1x, yh2,r1z);
line(ro2x, yh2,ro2z,r2x, yh2,r2z);
line(ro1x,-yh2,ro1z,r1x,-yh2,r1z);
line(ro2x,-yh2,ro2z,r2x,-yh2,r2z);
multiline(5,ro1x,yh2,ro1z, ro1x,-yh2,ro1z, ro2x,-yh2,ro2z, ro2x,yh2,ro2z, ro1x,yh2,ro1z);
/*update the relative coordinates of the channel entry and exits*/
dx2=dx1 + T.data[channel_no*T.columns + 3] + d_substrate + T.data[channel_no*T.columns + 4];
dx1=dx2 + T.data[channel_no*T.columns + 0];
dx2_q= dx1_q + d_substrate + T.data[channel_no*T.columns + 3]+ T.data[channel_no*T.columns + 4];
dx1_q= dx2_q+T.data[channel_no*T.columns + 1];
}
}
%}
END
|