File: Pol_bender_tapering.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (710 lines) | stat: -rw-r--r-- 27,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/****************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2003, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Pol_bender_tapering
*
* %I
* Written by: Erik Bergbaeck Knudsen (erkn@fysik.dtu.dk)
* Date: June 2012
* Origin: DTU Physics
*
* Polarising bender.
*
* %D
*
* A component modelling a set of identical blades bent to form a multcihannel (nslits)
* bender. The bender has a cylindrically curved entry plane (Will be extended to also
* allow a flat entry plane).
*
* The bender may also be tapered such that it can have focusing or defocusing porperties.
* This may be specified through the "channel_file"-parameter, which points to a data file
* in which the individual channels are defined by an entry- and an exit-width.
*
* The file format for channel file columns:
* > #d-spacing1 d-spacing2 l_spacer d-coating1 d-coating2
* > 1e-3  0.8e-3 1e-5  1e-9 1e-9
*
* Each blades is considered coated with a reflecting coating, whose thickness is defined in the
* latter two columsn of the channel data file.
*
* Coating reflectivities are read from
* another data file with separate reflectivities for up and down spin. When a neutron ray hits a blade
* the polarization vector associated with the ray is decomposed into spin-up and down
* probablities, which in turn determines the overall reflectivity for this ray on the mirror.
* Furthermore the probabilities are used to also reconstruct the polarization vector of the reflected
* ray.
*
* File format for the reflectivity file:
* > #parameter = m
* > q/m R(up) R(down)
*
* The effect of spacers inside the channels is modelled by absorption only. The depth of the spacers
* in a channel is considered constant for one channel (set in the channel data file), the number of
* them is constant across all channels and is an input parameter to the component.
*
* %P
*
* INPUT PARAMETERS:
*
* xwidth: [m]        Width at the bender entry. Currently unsupported.
* yheight: [m]       Height at the bender entry.
* length: [m]        Length of blades that make up the bender.
* d_substrate: [m]   Thickness of the substrate.
* entry_radius: [m]  Radius of curvature of the entrance window.
* radius: [m]        Curvature of a single plate/polarizer. +:curve left/-:right
* nslit:  [1]        Number of slits in the bender
* channel_file: [ ]  File name of file containing channel data. such as spacer widths etc. (see above for format)
* reflect_file: [ ]  File name of file containing reflectivity data parametrized either by q or m.
* sigma_abs: [barn]  Absorption per unit cell at v=2200 m/s of spacers. Defaults to literature value for Al.
* V0: [AA^3]         Volume of unit cell for spacers. Defaults to Al.
* nspacer: [ ]       Number of spacers per channel.
* G:     [m/s^2]     Magnitude of gravitation.
* debug: [ ]         If > 0 print out some internal parameters.
*
* %L
*
* %E
****************************************************************************/
DEFINE COMPONENT Pol_bender_tapering

SETTING PARAMETERS (string channel_file="channel.dat", xwidth=0, yheight, length,
        d_substrate, entry_radius=10, radius=100, G=9.8, int nslit=1, int debug=1,
        string reflect_file=NULL, sigma_abs=0.231, V0=66.4, nspacer=5)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
%include "pol-lib"
%include "ref-lib"
%include "read_table-lib"
#ifndef pol_reflect_spin_h
#define pol_reflect_spin_h 1

/***************************************************************************
* Calculate new spin vector after reflection in a surface with reflectivities
* Rup and Rdown referring to the direction of the vector (mx,my,mz)
 * m is assumed to have unit length, - if zero the default m=(0,1,0) is used.
 * returns the fraction of intensity thus reflected (if Rup+Rdown<1)
 **************************************************************************/
double pol_reflect_spin_ref(double Rup, double Rdown, double *sx, double *sy, double *sz, double mx, double my, double mz){
  double pm,ps1,ps2,pin;
  double s1x,s1y,s1z,s2x,s2y,s2z;
  if (mx==my && my==mz && mz==0.0){
    pm=*sy;
  }else{
    pm=scalar_prod(*sx,*sy,*sz,mx,my,mz);
    /*find two vectors perpendicular to m*/
    vec_prod(s1x,s1y,s1z,mx,my,mz,1.0,1.0,1.0);
    NORM(s1x,s1y,s1z);
    vec_prod(s2x,s2y,s2z,mx,my,mz,s1x,s1y,s1z);
    vec_prod(s1x,s1y,s1z,mx,my,mz,s2x,s2y,s2z);

    ps1=scalar_prod(*sx,*sy,*sz,s1x,s1y,s1z);
    ps2=scalar_prod(*sx,*sy,*sz,s2x,s2y,s2z);
  }
  /*the fractions of "up" and "down" neutrons*/
  double phiu=((pm)+1)/2.0;
  double phid=(1-(pm))/2.0;

  /*the relative fractions generate the new fraction*/
  if(phiu*Rup+phid*Rdown){
    pm=(phiu*Rup - phid*Rdown)/(phiu*Rup+phid*Rdown);
    pin=phiu*Rup+phid*Rdown;
    //printf("pin: %g\n",pin);
  }else{
    pm=0;
    pin=0;
  }
  if (mx==my && my==mz && mz==0.0){
    *sy=pm;
  }else{
    /*this may be wrong*/
    *sx=pm*mx + ps1*s1x + ps2*s2x;
    *sy=pm*my + ps1*s1y + ps2*s2y;
    *sz=pm*mz + ps1*s1z + ps2*s2z;
    NORM(*sx,*sy,*sz);
  }
  return pin;
}
  /***************************************************************************
 * Calculate new spin vector after reflection in a surface with reflectivities
 * Rup and Rdown referring to the y-axis (up)
 *****************************************************************/
double pol_reflect_spin(double Rup,double Rdown, double *sx, double *sy, double *sz){
  return pol_reflect_spin_ref(Rup, Rdown, sx, sy, sz, 0.0, 0.0, 0.0);
}

#endif

#ifndef to_channel_frame
#define to_channel_frame(rot,offset) \
  do {\
    mccoordschange(offset,rot,&x,&y,&z,&vx,&vy,&vz,&sx,&sy,&sz);\
  }while(0);
#endif

#ifndef from_channel_frame
#define from_channel_frame(rot,offset)\
  do {\
    double cx,cy,cz;\
    Rotation trot;\
    rot_transpose(rot,trot);\
    coords_get(offset,&cx,&cy,&cz);\
    x=x-cx;\
    y=y-cy;\
    z=z-cz;\
    mccoordschange_polarisation(trot,&x,&y,&z);\
    mccoordschange_polarisation(trot,&vx,&vy,&vz);\
    mccoordschange_polarisation(trot,&sx,&sy,&sz);\
  }while(0);
#endif


%}

DECLARE
%{
  t_Table T;
  t_Table R;
  t_Table C;
  int by_q;
  double rw;
  double rw_q;
  double phi;
  int bounce;
%}

INITIALIZE
%{
  int status,i;

  if(xwidth && entry_radius){
    fprintf(stderr,"Warning (%s): Both xwidth and entry_radius set. Entry_radius overrides xwidth\n",NAME_CURRENT_COMP);
    xwidth=0;
  }

  if ( (status=Table_Read(&(T),channel_file,0))==-1){
    fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",channel_file,NAME_CURRENT_COMP);
    exit(-1);
  }

  /*compute total opening and exit face of bender*/
  rw=(T.rows+1)*d_substrate;/*the substrate thickness * number of blades*/
  rw_q=(T.rows+1)*d_substrate;/*the substrate thickness * number of blades*/
  for (i=0;i<T.rows;i++){
    rw+=T.data[i*T.columns + 0];/*the channel spacing*/
    rw+=T.data[i*T.columns + 3];/*the positive side coating*/
    rw+=T.data[i*T.columns + 4];/*the negative side coating*/

    rw_q+=T.data[i*T.columns + 1];/*channel exit spacing*/
    rw_q+=T.data[i*T.columns + 3];/*the positive side coating*/
    rw_q+=T.data[i*T.columns + 4];/*the negative side coating*/
  }

  /*angular opening*/
  phi=rw/entry_radius;

  if ( (status=Table_Read(&(R),reflect_file,0))==-1){
    fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",reflect_file?reflect_file:"",NAME_CURRENT_COMP);
    exit(-1);
  }
  char **header_parsed;
  header_parsed=Table_ParseHeader(R.header,"parameter");
  if (strstr(header_parsed[0],"m")){
    by_q=0;
  }else{
    by_q=1;
  }

  /*Now do computations on the channel edge curvatures and store in a table
   *We need 2 cols for entry position, 2 for q (flat face exit pos), 2 for centre of curvature and 2 for exit pos
   * After this the channel details can be gotten by Table_index(C,coli,channel_no) and Table_Index(C,coli,channel_no+)
   * where the latter is the edge on the positive side.*/
  /*initialize the table*/
  Table_Init(&(C),8,T.rows);

%}

TRACE
%{
  int status,channel_no;
  double t0,t1;
  double rx,dx1,dx2;
  double xo,yo,zo,vox,voy,voz;
  double outer_radius;
  double dx1_q,dx2_q;
  /*propagate to entry surface (cylinder!)*/
  /*check which channel we're in, if any*/
  bounce=0;
  channel_no=0;
  
  if(xwidth){
    PROP_Z0;
    if ( y<-0.5*yheight || y>0.5*yheight ||x<-0.5*xwidth || x>0.5*xwidth) {
      /*Missed flat face bender. Leave neutron be*/
      channel_no=-1;
      RESTORE_NEUTRON(INDEX_CURRENT_COMP,x,y,z,vx,vy,vz,t,sx,sy,sz,p);
    }
    fprintf(stderr,"Error(%s): flat face bender tapering is not supported yet. Please use a large entry_raidus instead. Aborting.\n", NAME_CURRENT_COMP);
    exit(-1);
  }else if(entry_radius){
    status=cylinder_intersect(&t0,&t1,x,y,z-(-entry_radius),vx,vy,vz,entry_radius,1000);
    if (entry_radius>0){
      PROP_DT(t1);
    }else{
      PROP_DT(t0);
    }
    xo=x;yo=y;zo=z;
    vox=vx;voy=vy;voz=vz;
    if (!status || t1<0 || y<-0.5*yheight || y>0.5*yheight ||x<entry_radius*sin(-0.5*rw/entry_radius) || x>entry_radius*sin(0.5*rw/entry_radius)){
      /*Missed curved face bender. leave neutron be*/
      channel_no=-1;
      RESTORE_NEUTRON(INDEX_CURRENT_COMP,x,y,z,vx,vy,vz,t,sx,sy,sz,p);
    }
  }
  if(channel_no!=-1){
    /*So we actually hit the bender face - proceed*/
    double cphi, sphi, d1,d2, p0x,p0z, p1x,p1z, p2x,p2z, c1x,c1z, c2x,c2z, q0x,q0z, q1x,q1z, q2x,q2z, r1x,r1z, r2x,r2z;
    if (entry_radius) {
      channel_no=0;
      /*offsets of channel entry - initialize
       * outer edge (dx2) : bender end + 1 substrate thickness + coating (outer)
       * inner edge (dx1) : outer edge + channel width*/
      dx2 = -0.5*rw + d_substrate + T.data[channel_no*T.columns + 3];
      if ( x< dx2){
        /*hit first substrate*/
        ABSORB;
      }
      dx1 = dx2 +T.data[channel_no*T.columns + 0];

      cphi=cos(length/radius);
      sphi=sin(length/radius);

      q0x=radius*(1-cos(length/radius));/*exit point of bender centre*/
      q0z=radius*(sin(length/radius));

      /*the plates will end on a cirle of this radius*/
      outer_radius=entry_radius+length;//sqrt(q0x*q0x + (q0z+entry_radius)*(q0z+entry_radius));

      p2x= entry_radius*sin(dx2/entry_radius); /*channel entry coordinates*/
      p2z= entry_radius*(cos(dx2/entry_radius)-1);
      p1x= entry_radius*sin(dx1/entry_radius);
      p1z= entry_radius*(cos(dx1/entry_radius)-1);

      dx2_q = -0.5*rw_q + d_substrate + T.data[channel_no*T.columns + 3];
      /*add the offset due to blade curvature to dx2_q*/
      //dx2_q += asin(q0x/outer_radius)*outer_radius;
      dx1_q = dx2_q + T.data[channel_no*T.columns + 1];

      q2x= q0x - dx2_q*(-cphi);/*exit point of outer channel edge (without correction for channel blade length)*/
      q2z= q0z - dx2_q*(sphi);
      q1x= q0x - dx1_q*(-cphi);/*exit point of inner channel edge (without correction for channel blade length)*/
      q1z= q0z - dx1_q*(sphi);

#ifdef MCDEBUG
        printf("%sPTS: %i %g %g %g %g %g %g %g %g %g %g\n",NAME_CURRENT_COMP,channel_no,p1x,p1z,p2x,p2z,q1x,q1z,q2x,q2z,q0x,q0z);
#endif

      while ( !( x> entry_radius*sin(dx2/entry_radius) && x< entry_radius*sin(dx1/entry_radius) ) ){
        channel_no++;
        if(channel_no>T.rows){
          //printf("oops I've missed all channels ");
          //printf("%lld %g %g %g %g %g %g %g\n",mcget_run_num(),x,y,z,vx,vy,vz,p);
          ABSORB;
        }
        /*offsets of channel entry - update
         * outer edge (dx2) : previous inner edge + 1 coating (inner) + substrate thickness + coating (outer)
         * inner edge (dx1) : outer edge + channel width*/
        dx2=dx1 + T.data[channel_no*T.columns + 3] + d_substrate + T.data[channel_no*T.columns + 4];
        /*now check if we've hit the blade*/
        //if ( x< dx2 && x>dx1 ){
          /*hit a substrate*/
        //  ABSORB;
        //}
        dx1=dx2 + T.data[channel_no*T.columns + 0];

        dx2_q= dx1_q + d_substrate + T.data[channel_no*T.columns + 3]+ T.data[channel_no*T.columns + 4];
        dx1_q= dx2_q+T.data[channel_no*T.columns + 1];


        p2x= entry_radius*sin(dx2/entry_radius);
        p2z= entry_radius*(cos(dx2/entry_radius)-1);
        p1x= entry_radius*sin(dx1/entry_radius);
        p1z= entry_radius*(cos(dx1/entry_radius)-1);

        q2x= q0x - dx2_q*(-cphi);/*exit point of outer channel edge (without correction for channel blade length)*/
        q2z= q0z - dx2_q*(sphi);
        q1x= q0x - dx1_q*(-cphi);/*exit point of inner channel edge (without correction for channel blade length)*/
        q1z= q0z - dx1_q*(sphi);

        q1x=outer_radius*sin(dx1_q/outer_radius);
        q1z=outer_radius*(cos(dx1_q/outer_radius))-entry_radius;
        q2x=outer_radius*sin(dx2_q/outer_radius);
        q2z=outer_radius*(cos(dx2_q/outer_radius))-entry_radius;
        double h1,D1,h2,D2;
        /*helper variables to to compute intersection points of circles*/
        /*We need to put h1 and h2  to the side the bender is curving to - hence the sign operation*/
        D1=sqrt( (q1x-p1x)*(q1x-p1x) + (q1z-p1z)*(q1z-p1z) ) ;
        h1=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D1*D1);
        D2=sqrt( (q2x-p2x)*(q2x-p2x) + (q2z-p2z)*(q2z-p2z) ) ;
        h2=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D2*D2);

        c1x= p1x + 0.5*(q1x-p1x) + h1/D1 *  (q1z-p1z); /*these are the centers around which the channel edges actually rotate*/
        c1z= p1z + 0.5*(q1z-p1z) + h1/D1 * -(q1x-p1x); /*positive*/

        c2x= p2x + 0.5*(q2x-p2x) + h2/D2 *  (q2z-p2z); /*negative*/
        c2z= p2z + 0.5*(q2z-p2z) + h2/D2 * -(q2x-p2x);

        /*now find the exit points to place exit plane*/
        r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);
        r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);

        r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);
        r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);
        double nx,ny,nz;
        vec_prod(nx,ny,nz,0.0,1.0,0.0,r2x-r1x,0,r2z-r1z);
      //printf("DEBUG: %d   %g %g %g %g     %g %g %g %g     %g %g %g %g   %g %g %g %g   %g %g %g %g   %g %g %g %g\n",channel_no,p1x,p1z,p2x,p2z, r1x,r1z,r2x,r2z, q1x,q1z,q2x,q2z,outer_radius, q0x,q0z, asin(q0x/outer_radius)*outer_radius, c1x,c1z,c2x,c2z,dx1,dx2,dx1_q,dx2_q);
      }

      /*set a scatter upon entry*/
      SCATTER;

    }else{
      /*so it is a flat face bender*/
      channel_no=0;
      dx2=-0.5*rw;
      dx1=dx2+T.data[channel_no*T.columns + 0] + T.data[channel_no*T.columns + 4] + T.data[channel_no*T.columns + 3];
      while (!(x>dx2 && x<dx1)){
        channel_no++;
        dx2=dx1;
        dx1+=T.data[channel_no*T.columns + 0] + T.data[channel_no*T.columns + 4] + T.data[channel_no*T.columns + 3];
      }
      rx=(dx1+dx2)*0.5;
      SCATTER;
    }

    /*now the channel number is known. Given the central curvature of bender we may compute the placement of inner and outer cylinders. */
    /*Some helper points and variables:
      q is the end point of the uncurved blade.
      r is the end point of the curved blade 
      we get the offset of the curved endpoint from the central blade, and apply it to vectors
      parallel and perpendicular to QP.*/
    q1x=outer_radius*sin(dx1_q/outer_radius);
    q1z=outer_radius*(cos(dx1_q/outer_radius))-entry_radius;
    q2x=outer_radius*sin(dx2_q/outer_radius);
    q2z=outer_radius*(cos(dx2_q/outer_radius))-entry_radius;

    double L1,L2;
    L1=sqrt( (q1x-p1x)*(q1x-p1x) + (q1z-p1z)*(q1z-p1z) ) ;
    L2=sqrt( (q2x-p2x)*(q2x-p2x) + (q2z-p2z)*(q2z-p2z) ) ;
    r1x=p1x + q0z * (q1x-p1x)/L1 + q0x* (q1z-p1z)/L1; 
    r1z=p1z + q0z * (q1z-p1z)/L1 + q0x* -(q1x-p1x)/L1; 
    r2x=p2x + q0z * (q2x-p2x)/L2 + q0x* (q2z-p2z)/L2; 
    r2z=p2z + q0z * (q2z-p2z)/L2 + q0x* -(q2x-p2x)/L2; 
 
    double h1,D1,h2,D2;
    /*helper variables to to compute intersection points of circles*/
    /*We need to put h1 and h2  to the side the bender is curving to - hence the sign operation*/
    D1=sqrt( (r1x-p1x)*(r1x-p1x) + (r1z-p1z)*(r1z-p1z) ) ;
    h1=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D1*D1);
    D2=sqrt( (r2x-p2x)*(r2x-p2x) + (r2z-p2z)*(r2z-p2z) ) ;
    h2=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D2*D2);

    c1x= p1x + 0.5*(r1x-p1x) + h1/D1 *  (r1z-p1z); /*these are the centers around which the channel edges actually rotate*/
    c1z= p1z + 0.5*(r1z-p1z) + h1/D1 * -(r1x-p1x); /*positive*/

    c2x= p2x + 0.5*(r2x-p2x) + h2/D2 *  (r2z-p2z); /*negative*/
    c2z= p2z + 0.5*(r2z-p2z) + h2/D2 * -(r2x-p2x);

    /*now find the exit points to place exit plane*/
/*    r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);*/
/*    r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);*/
/**/
/*    r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);*/
/*    r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);*/
    double nx,ny,nz;
    vec_prod(nx,ny,nz,0.0,1.0,0.0,r2x-r1x,0,r2z-r1z);
#ifdef MCDEBUG
      printf("%sPTS2: %d %g %g %g %g\n",NAME_CURRENT_COMP,channel_no,r1x,r1z,r2x,r2z);
#endif
      //printf("DEBUG: %d   %g %g %g %g     %g %g %g %g     %g %g %g %g   %g %g %g %g   %g %g %g %g\n",channel_no,p1x,p1z,p2x,p2z, r1x,r1z,r2x,r2z, q1x,q1z,q2x,q2z,outer_radius, q0x,q0z, asin(q0x/outer_radius)*outer_radius, c1x,c1z,c2x,c2z);

    int exit=0;
    int coat1,coat2; /*are the blades coated at all*/
    coat1=(Table_Index(T,channel_no,3)>0.0);/*positive side coating*/
    coat2=(Table_Index(T,channel_no,4)>0.0);/*negative side coating*/
    do {
      int i1,i2,ic,ie,cyl;
      double t10,t11,t20,t21,tc,te;

      /*initialize times to seomthing known*/
      t10=t11=0;
      t20=t21=0;
      te=0;
      i1=cylinder_intersect(&t10,&t11,x-c1x,y,z-c1z,vx,vy,vz,radius,yheight);
      i2=cylinder_intersect(&t20,&t21,x-c2x,y,z-c2z,vx,vy,vz,radius,yheight);
      ie=plane_intersect(&te,x,y,z,vx,vy,vz,nx,ny,nz,r1x,0,r1z);
      /*catch the different cases*/
      if ( (!ie) && ( !i1 && !i2) ){
        fprintf(stderr,"Pol_bender (%s): Neutron xyz=(%g %g %g), v=(%g %g %g) cannot exit the bender or does not intersect either edge cylinder\n",NAME_CURRENT_COMP,x,y,z,vx,vy,vz);
        ABSORB;/*this should really not happen*/
      }

      /*find the smallest strictly positive intersection time of te, t21 and t10*/
      double tt=FLT_MAX;
      /*first we mask strictly nonpositive times with a very large number (FLT_MAX)*/
      t10=t10<=0?FLT_MAX:t10;
      t21=t21<=0?FLT_MAX:t21;
      te=te<=0?FLT_MAX:te;

      /*if radius<0 the edge on the positve x side becomes the outer one.
       * This means we chould compare t11 with t20, so in that case swap, and the algorithm should work*/
      if (radius<0){
        t10=t11;
        t21=t20;
      }

      enum{TOPBOTTOM,ENDFACE,CYL,CYL2,CYL1,UNKNOWN} branch;

      if (i2 &&(t21 <t10)){
        tt=t21;cyl=2;
        branch=CYL;
      }else if (i1){
        tt=t10;cyl=1;
        branch=CYL;
      }
      if (te<tt){
        tt=te;cyl=0;
        branch=ENDFACE;
      }
      if (i2&24){
        /* bitwise and with 16+8 to catch exit codes from cylinder_intersect. These mean that
         * neutron _exits_ through the top or bottom of the cylinder. Only cyl. 2 needs to be checked
         * since by design the neutron is always outside cyl. 1.*/
        branch = TOPBOTTOM;
        tt=0;
        ABSORB;
      } 
      if(tt==FLT_MAX){
        tt=0;
        branch=UNKNOWN;
        fprintf(stderr,"Cannot determine reflection branch: t21=%g, t10=%g ,te=%g\n",t21,t10,te);
        ABSORB;
      }

      switch (branch){
        case ENDFACE:
          /*exit through channel end - leave neutron be*/
          exit=1;
          break;
        case TOPBOTTOM:
          /*exit through top or bottom - leave neutron be*/
          exit=1;
          break;
        case CYL:
          /*we bounce on bender wall*/
          PROP_DT(tt);
          double nx,ny,nz,s,alpha,Q,Rup,Rdown;
          if (cyl==1){
            /*check if coated*/
            if(!coat1){
              /*not coated on this side*/
              ABSORB;
            }
            double vox=vx;
            double voy=vy;
            double voz=vz;
            double v=sqrt(scalar_prod(vx,vy,vz,vx,vy,vz));
            /*bounce on cylinder 1*/
            nx=x-c1x;ny=0;nz=z-c1z;
            NORM(nx,ny,nz);
            s=scalar_prod(vx,vy,vz,nx,ny,nz);
            vx=vx - s*2*nx;
            /*vy=vy - s*2*ny;*/
            vz=vz - s*2*nz;
            /*compute reflectivity based on coating (m=3.2?)*/
            alpha=acos(scalar_prod(vx,vy,vz,vox,voy,voz)/v/v);
            /* Now compute reflectivity. */
            Q = 2.0*sin(alpha/2.0)*sqrt(scalar_prod(vx,vy,vz,vx,vy,vz))*V2K;

            if(!by_q){
              Q=Q/0.0217; /*convert to m-value by conversion factor 2.17 AA^-1*/
            }
            Rup=Table_Value(R,Q,1);
            Rdown=Table_Value(R,Q,2);
            p*=pol_reflect_spin(Rup,Rdown,&sx,&sy,&sz);
          }else{
            if(!coat2){
              /*not coated on this side*/
              ABSORB;
            }
            double vox=vx;
            double voy=vy;
            double voz=vz;
            double v=sqrt(scalar_prod(vx,vy,vz,vx,vy,vz));
            /*bounce on cylinder 2*/
            nx=x-c2x;ny=0;nz=z-c2z;
            NORM(nx,ny,nz);
            s=scalar_prod(vx,vy,vz,nx,ny,nz);
            vx=vx - s*2*nx;
            /*vy=vy - s*2*ny;*/
            vz=vz - s*2*nz;
            /*compute reflectivity based on coating (m=3.2?)*/
            alpha=acos(scalar_prod(vx,vy,vz,vox,voy,voz)/v/v);
            /* Now compute reflectivity. */
            Q = 2.0*sin(alpha/2.0)*sqrt(scalar_prod(vx,vy,vz,vx,vy,vz))*V2K;

            if(!by_q){
              Q=Q/0.0217; /*convert to m-value by conversion factor 2.17 AA^-1*/
            }
            Rup=Table_Value(R,Q,1);
            Rdown=Table_Value(R,Q,2);
            p*=pol_reflect_spin(Rup,Rdown,&sx,&sy,&sz);
          }
          /*if trace is set - transform back to bender frame, set SCATTER, and transform back to channel frame again*/
          bounce++;
          SCATTER;

          break;
      }
    }while (!exit);

    /*add spacer absorption*/
    double v,pmul;
    v=sqrt(scalar_prod(vx,vy,vz,vx,vy,vz));
    pmul = exp( - (nspacer*Table_Index(T,channel_no,2)) * (sigma_abs*2200*100/V0/v));
    p*=pmul;

    SCATTER;
  }
%}

MCDISPLAY
%{

  /*first draw the outer edges*/
  double yh2=yheight/2.0;
  int channel_no=0;
  int N=16;
  if(channel_no!=-1){
    /*So we actually hit the bender face - proceed*/
    double cphi, sphi, d1,d2, p0x,p0z, p1x,p1z, p2x,p2z, c1x,c1z, c2x,c2z, q0x,q0z, q1x,q1z, q2x,q2z, r1x,r1z, r2x,r2z;
    double dx1,dx2,dx1_q,dx2_q;
    channel_no=0;
    dx2 = -0.5*rw + d_substrate + T.data[channel_no*T.columns + 3];
    dx1 = dx2 +T.data[channel_no*T.columns + 0];

    dx2_q = -0.5*rw_q + d_substrate + T.data[channel_no*T.columns + 3];
    dx1_q = dx2_q + T.data[channel_no*T.columns + 1];

    for (channel_no=0;channel_no<T.rows;channel_no++){
      if (T.rows>20 && channel_no!=0 && channel_no!=T.rows-1 && channel_no%100!=0){
        /*update the relative coordinates of the channel entry and exits but don't actually draw anything*/
        dx2=dx1 + T.data[channel_no*T.columns + 3] + d_substrate + T.data[channel_no*T.columns + 4];
        dx1=dx2 + T.data[channel_no*T.columns + 0];

        dx2_q= dx1_q + d_substrate + T.data[channel_no*T.columns + 3]+ T.data[channel_no*T.columns + 4];
        dx1_q= dx2_q+T.data[channel_no*T.columns + 1];
        continue;
      }

      if (entry_radius) {
        /*offsets of channel entry - initialize
         * outer edge (dx2) : bender end + 1 substrate thickness + coating (outer)
         * inner edge (dx1) : outer edge + channel width*/
        p2x= entry_radius*sin(dx2/entry_radius); /*channel entry coordinates*/
        p2z= entry_radius*(cos(dx2/entry_radius)-1);
        p1x= entry_radius*sin(dx1/entry_radius);
        p1z= entry_radius*(cos(dx1/entry_radius)-1);
      }

      q0x=radius*(1-cos(length/radius));/*exit point of bender centre*/
      q0z=radius*(sin(length/radius));


      cphi=cos(length/radius);
      sphi=sin(length/radius);

      q2x= q0x - dx2_q*(-cphi);/*exit point of outer channel edge (without correction for channel blade length)*/
      q2z= q0z - dx2_q*(sphi);
      q1x= q0x - dx1_q*(-cphi);/*exit point of inner channel edge (without correction for channel blade length)*/
      q1z= q0z - dx1_q*(sphi);


      double h1,D1,h2,D2; /*helper variables to to compute intersection points of circles*/
      D1=sqrt( (q1x-p1x)*(q1x-p1x) + (q1z-p1z)*(q1z-p1z) ) ;
      h1=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D1*D1);
      D2=sqrt( (q2x-p2x)*(q2x-p2x) + (q2z-p2z)*(q2z-p2z) ) ;
      h2=(radius<0?-1:1)*sqrt( radius*radius - 0.25*D2*D2);

      c1x= p1x + 0.5*(q1x-p1x) + h1/D1 *  (q1z-p1z); /*these are the centers around which the channel edges actually rotate*/
      c1z= p1z + 0.5*(q1z-p1z) + h1/D1 * -(q1x-p1x); /*positive*/

      c2x= p2x + 0.5*(q2x-p2x) + h2/D2 *  (q2z-p2z); /*negative*/
      c2z= p2z + 0.5*(q2z-p2z) + h2/D2 * -(q2x-p2x);

      /*now we know what the circles are - draw N circle segments at +h/2 and -h/2 to mark channels*/
      double dl=length/N;
      double ro1x,ro1z,ro2x,ro2z;
      ro1x=p1x;
      ro1z=p1z;
      ro2x=p2x;
      ro2z=p2z;
      multiline(5,ro1x,yh2,ro1z, ro1x,-yh2,ro1z, ro2x,-yh2,ro2z, ro2x,yh2,ro2z, ro1x,yh2,ro1z);

      cphi=cos(dl/radius);
      sphi=sin(dl/radius);
      /*now find the exit points to place exit plane of circle segment*/
      r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);
      r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);

      r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);
      r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);
      /*loop until exit*/
      while (dl<=length){
        line(ro1x, yh2,ro1z,r1x, yh2,r1z);
        line(ro2x, yh2,ro2z,r2x, yh2,r2z);
        line(ro1x,-yh2,ro1z,r1x,-yh2,r1z);
        line(ro2x,-yh2,ro2z,r2x,-yh2,r2z);

        /*update dl*/
        dl+=length/N;
        /*store old exit in ro1x etc.*/
        ro1x=r1x;
        ro1z=r1z;
        ro2x=r2x;
        ro2z=r2z;

        cphi=cos(dl/radius);
        sphi=sin(dl/radius);
        /*now find the exit points to place exit plane of circle segment*/
        r1x=c1x + cphi*(p1x-c1x) + sphi*(p1z-c1z);
        r1z=c1z - sphi*(p1x-c1x) + cphi*(p1z-c1z);

        r2x=c2x + cphi*(p2x-c2x) + sphi*(p2z-c2z);
        r2z=c2z - sphi*(p2x-c2x) + cphi*(p2z-c2z);
      }
      /*draw the last segment*/
      line(ro1x, yh2,ro1z,r1x, yh2,r1z);
      line(ro2x, yh2,ro2z,r2x, yh2,r2z);
      line(ro1x,-yh2,ro1z,r1x,-yh2,r1z);
      line(ro2x,-yh2,ro2z,r2x,-yh2,r2z);
      multiline(5,ro1x,yh2,ro1z, ro1x,-yh2,ro1z, ro2x,-yh2,ro2z, ro2x,yh2,ro2z, ro1x,yh2,ro1z);

      /*update the relative coordinates of the channel entry and exits*/
      dx2=dx1 + T.data[channel_no*T.columns + 3] + d_substrate + T.data[channel_no*T.columns + 4];
      dx1=dx2 + T.data[channel_no*T.columns + 0];

      dx2_q= dx1_q + d_substrate + T.data[channel_no*T.columns + 3]+ T.data[channel_no*T.columns + 4];
      dx1_q= dx2_q+T.data[channel_no*T.columns + 1];

    }
  }
%}

END