1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*******************************************************************************
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SANSEllipticCylinders
*
* %I
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample of monodisperse cylindrical particles with elliptic cross section in
* solution.
*
* %D
* A component simulating the scattering from a box-shaped, thin solution
* of monodisperse, cylindrical particles with elliptic cross section.
*
* %P
* R1: [AA] First semiaxis of the cross section of the
* elliptic cylinder.
* R2: [AA] Second semiaxis of the cross section of the
* elliptic cylinder.
* Height: [AA] Height of the elliptic cylinder.
* Concentration: [mM] Concentration of sample.
* DeltaRho: [cm/AA^3] Excess scattering length density of the
* particles.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m] Dimension of component in the x-direction.
* yheight: [m] Dimension of component in the y-direction.
* zdepth: [m] Dimension of component in the z-direction.
* SampleToDetectorDistance: [m] Distance from sample to detector (for
* focusing the scattered neutrons).
* DetectorRadius: [m] Radius of the detector (for focusing the
* scattered neutrons).
*
* %E
*******************************************************************************/
DEFINE COMPONENT SANSEllipticCylinders
SETTING PARAMETERS (R1 = 20.0, R2 = 40.0, Height = 100.0, Concentration = 0.01, DeltaRho = 1.0e-14, AbsorptionCrosssection = 0.0,
xwidth, yheight, zdepth, SampleToDetectorDistance, DetectorRadius)
DEPENDENCY " @GSLFLAGS@ "
NOACC
/*X-ray Parameters (x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p)*/
SHARE
%{
#include <gsl/gsl_sf_bessel.h>
%}
DECLARE
%{
// Declarations
double Prefactor;
double Absorption;
double q;
double NumberDensity;
%}
INITIALIZE
%{
// Rescale concentration into number of aggregates per m^3 times 10^-4
NumberDensity = Concentration * 6.02214129e19;
// Computations
if (!xwidth || !yheight || !zdepth) {
printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
}
Prefactor = NumberDensity * pow(PI * Height * R1 * R2, 2) * pow(DeltaRho, 2);
Absorption = AbsorptionCrosssection;
%}
TRACE
%{
// Declarations
double t0;
double t1;
double l_full;
double l;
double l1;
double Formfactor1;
double Formfactor2;
double Intensity;
double SolidAngle;
double qx;
double qy;
double qz;
double v;
double dt;
double vx_i;
double vy_i;
double vz_i;
double ProjectedRadius;
char Intersect = 0;
// Variables needed for integration over alpha
int i;
const int NumberOfStepsInAlpha = 30;
double Alpha;
const double AlphaMin = 0.0;
const double AlphaMax = PI / 2.0;
const double AlphaStep = (AlphaMax - AlphaMin) / (1.0 * NumberOfStepsInAlpha);
// Variables needed in integration over beta
int j;
const int NumberOfStepsInBeta = 30;
double Beta;
const double BetaMin = 0.0;
const double BetaMax = PI / 2.0;
const double BetaStep = (BetaMax - BetaMin) / (1.0 * NumberOfStepsInBeta);
// Computation
Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
if (Intersect) {
if (t0 < 0.0) {
fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
ABSORB;
}
// Compute properties of neutron
v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
l_full = v * (t1 - t0);
dt = rand01() * (t1 - t0) + t0;
PROP_DT(dt);
l = v * (dt - t0);
// Store properties of incoming neutron
vx_i = vx;
vy_i = vy;
vz_i = vz;
// Generate new direction of neutron
randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
// Compute q
qx = V2K * (vx_i - vx);
qy = V2K * (vy_i - vy);
qz = V2K * (vz_i - vz);
q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));
// Compute scattering
l1 = v * t1;
Intensity = 0.0;
for (i = 0; i < NumberOfStepsInAlpha; ++i) {
Alpha = (i + 0.5) * AlphaStep;
for (j = 0; j < NumberOfStepsInBeta; ++j) {
Beta = (j + 0.5) * BetaStep;
ProjectedRadius = sqrt(pow(R1 * sin(Beta), 2) + pow(R2 * cos(Beta), 2));
Formfactor1 = gsl_sf_bessel_J1(q * ProjectedRadius * sin(Alpha)) / (q * ProjectedRadius * sin(Alpha));
Formfactor2 = sin(q * Height * cos(Alpha) / 2.0) / (q * Height * cos(Alpha) / 2.0);
Intensity += 2 / PI * sin(Alpha) * Prefactor * pow(2 * Formfactor1 * Formfactor2, 2) * AlphaStep * BetaStep;
}
}
p *= l_full * SolidAngle / (4.0 * PI) * Intensity * exp(- Absorption * (l + l1) / v);
SCATTER;
}
%}
MCDISPLAY
%{
box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}
END
|