File: SANSLiposomes.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (242 lines) | stat: -rw-r--r-- 8,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*******************************************************************************
* McStas, neutron ray-tracing package
*         Copyright 1997-2003, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SANSLiposomes
*
* %I
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample of polydisperse liposomes in solution (water).
*
* %D
* A component simulating the scattering from a box-shaped, thin solution (water)
* of liposomes described by a pentuple-shell model.
*
* %P
* Radius: [AA]                       Average thickness of the liposomes.
* Thickness: [AA]                    Thickness of the bilayer.
* SigmaRadius: []		Relative Gaussian deviation of the radius in the distribution of liposomes.
* VolumeOfHeadgroup: [AA^3]          Volume of one lipid headgroup - default is POPC.
* VolumeOfCH2Tail: [AA^3]            Volume of the CH2-chains of one lipid - default is POPC.
* VolumeOfCH3Tail: [AA^3]            Volume of the CH3-tails of one lipid - default is POPC.
* ScatteringLengthOfHeadgroup: [cm]  Scattering length of one lipid headgroup - default is POPC in D2O.
* ScatteringLengthOfCH2Tail: [cm]    Scattering length of the CH2-chains of one lipid - default is POPC in D2O.
* ScatteringLengthOfCH3Tail: [cm]    Scattering length of the CH3-tails of one lipid - default is POPC in D2O.
* Concentration: [mM]                Concentration of sample.
* RhoSolvent: [cm/AA^3]              Scattering length density of solvent - default is D2O.
* AbsorptionCrosssection: [1/m]      Absorption cross section of the sample.
* xwidth: [m]                        Dimension of component in the x-direction.
* yheight: [m]                       Dimension of component in the y-direction.
* zdepth: [m]                        Dimension of component in the z-direction.
* SampleToDetectorDistance: [m]      Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m]                Radius of the detector (for focusing the scattered neutrons).
*
* %E
*******************************************************************************/

DEFINE COMPONENT SANSLiposomes



SETTING PARAMETERS (Radius = 800.0, Thickness = 38.89, SigmaRadius = 0.20,
  VolumeOfHeadgroup = 319.0, VolumeOfCH2Tail = 818.8, VolumeOfCH3Tail = 108.6,
  ScatteringLengthOfHeadgroup = 7.05E-12, ScatteringLengthOfCH2Tail = -1.76E-12, ScatteringLengthOfCH3Tail = -9.15E-13,
  Concentration = 0.01, RhoSolvent = 6.4e-14, AbsorptionCrosssection = 0.0,
  xwidth, yheight, zdepth, SampleToDetectorDistance, DetectorRadius)



SHARE
%{
  // Functions used for compution the intensity from a given liposome
#pragma acc routine
  double FormfactorSphere(double q, double R)
	{
		return 3 * (sin(q * R) - q * R * cos(q * R)) / pow(q * R, 3);
	}

#pragma acc routine
	double IntensityOfLiposome(double q, double R, double ThicknessHead, double ThicknessTail, double ThicknessCH3, double DeltaRhoHead, double DeltaRhoCH2, double DeltaRhoCH3)
	{
		const double RHeadOut = R + ThicknessHead + ThicknessTail + ThicknessCH3;
		const double RTailOut = R + ThicknessTail + ThicknessCH3;
		const double RCH3Out  = R + ThicknessCH3;
		const double RCH3In   = R - ThicknessCH3;
		const double RTailIn  = R - ThicknessTail - ThicknessCH3;
		const double RHeadIn  = R - ThicknessHead - ThicknessTail - ThicknessCH3;

		const double VolumeHeadOut = 4.0 / 3.0 * PI * pow(RHeadOut, 3) - 4.0 / 3.0 * PI * pow(RTailOut, 3);
		const double VolumeTailOut = 4.0 / 3.0 * PI * pow(RTailOut, 3) - 4.0 / 3.0 * PI * pow(RCH3Out, 3);
		const double VolumeCH3     = 4.0 / 3.0 * PI * pow(RCH3Out, 3)  - 4.0 / 3.0 * PI * pow(RCH3In, 3);
		const double VolumeTailIn  = 4.0 / 3.0 * PI * pow(RCH3In, 3)   - 4.0 / 3.0 * PI * pow(RTailIn, 3);
		const double VolumeHeadIn  = 4.0 / 3.0 * PI * pow(RTailIn, 3)  - 4.0 / 3.0 * PI * pow(RHeadIn, 3);

		const double AmplitudeHeadOut = DeltaRhoHead * VolumeHeadOut * (pow(RHeadOut, 3) * FormfactorSphere(q, RHeadOut) - pow(RTailOut, 3) * FormfactorSphere(q, RTailOut)) / (pow(RHeadOut, 3) - pow(RTailOut, 3));
		const double AmplitudeTailOut = DeltaRhoCH2  * VolumeTailOut * (pow(RTailOut, 3) * FormfactorSphere(q, RTailOut) - pow(RCH3Out, 3) * FormfactorSphere(q, RCH3Out)) / (pow(RTailOut, 3) - pow(RCH3Out, 3));
		const double AmplitudeCH3     = DeltaRhoCH3  * VolumeCH3 * (pow(RCH3Out, 3) * FormfactorSphere(q, RCH3Out) - pow(RCH3In, 3) * FormfactorSphere(q, RCH3In)) / (pow(RCH3Out, 3) - pow(RCH3In, 3));
		const double AmplitudeTailIn  = DeltaRhoCH2  * VolumeTailIn * (pow(RCH3In, 3) * FormfactorSphere(q, RCH3In) - pow(RTailIn, 3) * FormfactorSphere(q, RTailIn)) / (pow(RCH3In, 3) - pow(RTailIn, 3));
		const double AmplitudeHeadIn  = DeltaRhoHead * VolumeHeadIn * (pow(RTailIn, 3) * FormfactorSphere(q, RTailIn) - pow(RHeadIn, 3) * FormfactorSphere(q, RHeadIn)) / (pow(RTailIn, 3) - pow(RHeadIn, 3));
		const double Intensity = pow(AmplitudeHeadOut + AmplitudeTailOut + AmplitudeCH3 + AmplitudeTailIn + AmplitudeHeadIn, 2);
		return Intensity;
	}
%}

DECLARE
%{
	// Declarations
	double Absorption;
	double NumberDensity;

	int NumberOfStepsInR;
	double RMin;
	double RMax;
	double RStep;

	// Scattering lengths
	double DeltaRhoHead;
	double DeltaRhoCH2Tail;
	double DeltaRhoCH3Tail;

	// Thickness
	double ThicknessOfHead;
	double ThicknessOfCH2Tail;
	double ThicknessOfCH3Tail;
%}

INITIALIZE
%{
	// Rescale concentration into number of aggregates per m^3 times 10^-4
	NumberDensity = Concentration * 6.02214129e19;

	// Computations
	if (!xwidth || !yheight || !zdepth) {
		printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
	}

	Absorption = AbsorptionCrosssection;

	// Variables needed for integration over the polydispersity
	NumberOfStepsInR = 100;

	RMin = Radius - 3.0 * SigmaRadius * Radius;

	if (RMin < Thickness / 2.0) {
		RMin = Thickness / 2.0;
	}

	RMax = Radius + 3.0 * SigmaRadius * Radius;

	RStep = (RMax - RMin) / (1.0f * NumberOfStepsInR);

	// Molecular properties of liposomes
	const double RhoHead    = ScatteringLengthOfHeadgroup / VolumeOfHeadgroup;
	const double RhoCH2Tail = ScatteringLengthOfCH2Tail   / VolumeOfCH2Tail;
	const double RhoCH3Tail = ScatteringLengthOfCH3Tail   / VolumeOfCH3Tail;

	DeltaRhoHead    = RhoHead    - RhoSolvent;
	DeltaRhoCH2Tail = RhoCH2Tail - RhoSolvent;
	DeltaRhoCH3Tail = RhoCH3Tail - RhoSolvent;

	ThicknessOfHead    = Thickness * VolumeOfHeadgroup / (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail);
	ThicknessOfCH2Tail = Thickness * VolumeOfCH2Tail   / (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail);
	ThicknessOfCH3Tail = Thickness * VolumeOfCH3Tail   / (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail);
%}

TRACE
%{
	// Declarations
	double t0;
	double t1;
	double l_full;
	double l;
	double l1;
	double Intensity;
	double Weight1;
	double Weight2;
	double IntensityPart;
	double SolidAngle;
	double q;
	double qx;
	double qy;
	double qz;
	double v;
	double dt;
	double vx_i;
	double vy_i;
	double vz_i;
	char Intersect = 0;
	double R;
	int i;

	// Computation
	Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);

	if (Intersect) {

		if (t0 < 0.0) {
			fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
			ABSORB;
    	}

		// Compute properties of neutron
		v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
		l_full = v * (t1 - t0);
		dt = rand01() * (t1 - t0) + t0;
		PROP_DT(dt);
		l = v * (dt - t0);

		// Store properties of incoming neutron
		vx_i = vx;
		vy_i = vy;
		vz_i = vz;

		// Generate new direction of neutron
		randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);

		NORM(vx, vy, vz);

		vx *= v;
		vy *= v;
		vz *= v;

		// Compute q
		qx = V2K * (vx_i - vx);
		qy = V2K * (vy_i - vy);
		qz = V2K * (vz_i - vz);

		q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));

		// Compute scattering
		l1 = v * t1;

		Intensity = 0.0;

		Weight1 = 1.0 / (SigmaRadius * Radius * sqrt(2.0 * PI));

		for (i = 0; i < NumberOfStepsInR; ++i) {
			R = RMin + RStep * (i + 0.5);

			IntensityPart = IntensityOfLiposome(q, R, ThicknessOfHead, ThicknessOfCH2Tail, ThicknessOfCH3Tail, DeltaRhoHead, DeltaRhoCH2Tail, DeltaRhoCH3Tail);

			Weight2 = exp(- pow((R - Radius) / (sqrt(2.0) * SigmaRadius * Radius), 2));

			Intensity += Weight1 * Weight2 * IntensityPart * RStep;
		}

		p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1) / v);

		SCATTER;
	}
%}

MCDISPLAY
%{	
  box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}

END