1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*******************************************************************************
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SANSLiposomes
*
* %I
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample of polydisperse liposomes in solution (water).
*
* %D
* A component simulating the scattering from a box-shaped, thin solution (water)
* of liposomes described by a pentuple-shell model.
*
* %P
* Radius: [AA] Average thickness of the liposomes.
* Thickness: [AA] Thickness of the bilayer.
* SigmaRadius: [] Relative Gaussian deviation of the radius in the distribution of liposomes.
* VolumeOfHeadgroup: [AA^3] Volume of one lipid headgroup - default is POPC.
* VolumeOfCH2Tail: [AA^3] Volume of the CH2-chains of one lipid - default is POPC.
* VolumeOfCH3Tail: [AA^3] Volume of the CH3-tails of one lipid - default is POPC.
* ScatteringLengthOfHeadgroup: [cm] Scattering length of one lipid headgroup - default is POPC in D2O.
* ScatteringLengthOfCH2Tail: [cm] Scattering length of the CH2-chains of one lipid - default is POPC in D2O.
* ScatteringLengthOfCH3Tail: [cm] Scattering length of the CH3-tails of one lipid - default is POPC in D2O.
* Concentration: [mM] Concentration of sample.
* RhoSolvent: [cm/AA^3] Scattering length density of solvent - default is D2O.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m] Dimension of component in the x-direction.
* yheight: [m] Dimension of component in the y-direction.
* zdepth: [m] Dimension of component in the z-direction.
* SampleToDetectorDistance: [m] Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m] Radius of the detector (for focusing the scattered neutrons).
*
* %E
*******************************************************************************/
DEFINE COMPONENT SANSLiposomes
SETTING PARAMETERS (Radius = 800.0, Thickness = 38.89, SigmaRadius = 0.20,
VolumeOfHeadgroup = 319.0, VolumeOfCH2Tail = 818.8, VolumeOfCH3Tail = 108.6,
ScatteringLengthOfHeadgroup = 7.05E-12, ScatteringLengthOfCH2Tail = -1.76E-12, ScatteringLengthOfCH3Tail = -9.15E-13,
Concentration = 0.01, RhoSolvent = 6.4e-14, AbsorptionCrosssection = 0.0,
xwidth, yheight, zdepth, SampleToDetectorDistance, DetectorRadius)
SHARE
%{
// Functions used for compution the intensity from a given liposome
#pragma acc routine
double FormfactorSphere(double q, double R)
{
return 3 * (sin(q * R) - q * R * cos(q * R)) / pow(q * R, 3);
}
#pragma acc routine
double IntensityOfLiposome(double q, double R, double ThicknessHead, double ThicknessTail, double ThicknessCH3, double DeltaRhoHead, double DeltaRhoCH2, double DeltaRhoCH3)
{
const double RHeadOut = R + ThicknessHead + ThicknessTail + ThicknessCH3;
const double RTailOut = R + ThicknessTail + ThicknessCH3;
const double RCH3Out = R + ThicknessCH3;
const double RCH3In = R - ThicknessCH3;
const double RTailIn = R - ThicknessTail - ThicknessCH3;
const double RHeadIn = R - ThicknessHead - ThicknessTail - ThicknessCH3;
const double VolumeHeadOut = 4.0 / 3.0 * PI * pow(RHeadOut, 3) - 4.0 / 3.0 * PI * pow(RTailOut, 3);
const double VolumeTailOut = 4.0 / 3.0 * PI * pow(RTailOut, 3) - 4.0 / 3.0 * PI * pow(RCH3Out, 3);
const double VolumeCH3 = 4.0 / 3.0 * PI * pow(RCH3Out, 3) - 4.0 / 3.0 * PI * pow(RCH3In, 3);
const double VolumeTailIn = 4.0 / 3.0 * PI * pow(RCH3In, 3) - 4.0 / 3.0 * PI * pow(RTailIn, 3);
const double VolumeHeadIn = 4.0 / 3.0 * PI * pow(RTailIn, 3) - 4.0 / 3.0 * PI * pow(RHeadIn, 3);
const double AmplitudeHeadOut = DeltaRhoHead * VolumeHeadOut * (pow(RHeadOut, 3) * FormfactorSphere(q, RHeadOut) - pow(RTailOut, 3) * FormfactorSphere(q, RTailOut)) / (pow(RHeadOut, 3) - pow(RTailOut, 3));
const double AmplitudeTailOut = DeltaRhoCH2 * VolumeTailOut * (pow(RTailOut, 3) * FormfactorSphere(q, RTailOut) - pow(RCH3Out, 3) * FormfactorSphere(q, RCH3Out)) / (pow(RTailOut, 3) - pow(RCH3Out, 3));
const double AmplitudeCH3 = DeltaRhoCH3 * VolumeCH3 * (pow(RCH3Out, 3) * FormfactorSphere(q, RCH3Out) - pow(RCH3In, 3) * FormfactorSphere(q, RCH3In)) / (pow(RCH3Out, 3) - pow(RCH3In, 3));
const double AmplitudeTailIn = DeltaRhoCH2 * VolumeTailIn * (pow(RCH3In, 3) * FormfactorSphere(q, RCH3In) - pow(RTailIn, 3) * FormfactorSphere(q, RTailIn)) / (pow(RCH3In, 3) - pow(RTailIn, 3));
const double AmplitudeHeadIn = DeltaRhoHead * VolumeHeadIn * (pow(RTailIn, 3) * FormfactorSphere(q, RTailIn) - pow(RHeadIn, 3) * FormfactorSphere(q, RHeadIn)) / (pow(RTailIn, 3) - pow(RHeadIn, 3));
const double Intensity = pow(AmplitudeHeadOut + AmplitudeTailOut + AmplitudeCH3 + AmplitudeTailIn + AmplitudeHeadIn, 2);
return Intensity;
}
%}
DECLARE
%{
// Declarations
double Absorption;
double NumberDensity;
int NumberOfStepsInR;
double RMin;
double RMax;
double RStep;
// Scattering lengths
double DeltaRhoHead;
double DeltaRhoCH2Tail;
double DeltaRhoCH3Tail;
// Thickness
double ThicknessOfHead;
double ThicknessOfCH2Tail;
double ThicknessOfCH3Tail;
%}
INITIALIZE
%{
// Rescale concentration into number of aggregates per m^3 times 10^-4
NumberDensity = Concentration * 6.02214129e19;
// Computations
if (!xwidth || !yheight || !zdepth) {
printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
}
Absorption = AbsorptionCrosssection;
// Variables needed for integration over the polydispersity
NumberOfStepsInR = 100;
RMin = Radius - 3.0 * SigmaRadius * Radius;
if (RMin < Thickness / 2.0) {
RMin = Thickness / 2.0;
}
RMax = Radius + 3.0 * SigmaRadius * Radius;
RStep = (RMax - RMin) / (1.0f * NumberOfStepsInR);
// Molecular properties of liposomes
const double RhoHead = ScatteringLengthOfHeadgroup / VolumeOfHeadgroup;
const double RhoCH2Tail = ScatteringLengthOfCH2Tail / VolumeOfCH2Tail;
const double RhoCH3Tail = ScatteringLengthOfCH3Tail / VolumeOfCH3Tail;
DeltaRhoHead = RhoHead - RhoSolvent;
DeltaRhoCH2Tail = RhoCH2Tail - RhoSolvent;
DeltaRhoCH3Tail = RhoCH3Tail - RhoSolvent;
ThicknessOfHead = Thickness * VolumeOfHeadgroup / (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail);
ThicknessOfCH2Tail = Thickness * VolumeOfCH2Tail / (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail);
ThicknessOfCH3Tail = Thickness * VolumeOfCH3Tail / (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail);
%}
TRACE
%{
// Declarations
double t0;
double t1;
double l_full;
double l;
double l1;
double Intensity;
double Weight1;
double Weight2;
double IntensityPart;
double SolidAngle;
double q;
double qx;
double qy;
double qz;
double v;
double dt;
double vx_i;
double vy_i;
double vz_i;
char Intersect = 0;
double R;
int i;
// Computation
Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
if (Intersect) {
if (t0 < 0.0) {
fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
ABSORB;
}
// Compute properties of neutron
v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
l_full = v * (t1 - t0);
dt = rand01() * (t1 - t0) + t0;
PROP_DT(dt);
l = v * (dt - t0);
// Store properties of incoming neutron
vx_i = vx;
vy_i = vy;
vz_i = vz;
// Generate new direction of neutron
randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
// Compute q
qx = V2K * (vx_i - vx);
qy = V2K * (vy_i - vy);
qz = V2K * (vz_i - vz);
q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));
// Compute scattering
l1 = v * t1;
Intensity = 0.0;
Weight1 = 1.0 / (SigmaRadius * Radius * sqrt(2.0 * PI));
for (i = 0; i < NumberOfStepsInR; ++i) {
R = RMin + RStep * (i + 0.5);
IntensityPart = IntensityOfLiposome(q, R, ThicknessOfHead, ThicknessOfCH2Tail, ThicknessOfCH3Tail, DeltaRhoHead, DeltaRhoCH2Tail, DeltaRhoCH3Tail);
Weight2 = exp(- pow((R - Radius) / (sqrt(2.0) * SigmaRadius * Radius), 2));
Intensity += Weight1 * Weight2 * IntensityPart * RStep;
}
p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1) / v);
SCATTER;
}
%}
MCDISPLAY
%{
box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}
END
|