File: SANSNanodiscsFast.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (363 lines) | stat: -rw-r--r-- 12,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*******************************************************************************
* McStas, neutron ray-tracing package
*         Copyright 1997-2003, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SANSNanodiscsFast
*
* %I
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample of monodisperse phospholipid bilayer nanodiscs in solution (water).
*
* %D
* A component very similar to EmptyNanodiscs.comp - however, the scattering
* profile is only computed once, and linear interpolation is the used to
* simulate the instrument.
*
* %P
* AxisRatio: []		                   Axis ratio of the bilayer patch.
* NumberOfLipids: []		             Number of lipids per nanodisc.
* AreaPerLipidHeadgroup: [AA^2]      Area per lipid headgroup - default is POPC.
* HeightOfMSP: [AA]                  Height of the belt protein - default is MSP1D1.
* VolumeOfOneMSP: [AA^3]             Volume of one belt protein - default is MSP1D1.
* VolumeOfHeadgroup: [AA^3]          Volume of one lipid headgroup - default is POPC.
* VolumeOfCH2Tail: [AA^3]            Volume of the CH2-chains of one lipid - default is POPC.
* VolumeOfCH3Tail: [AA^3]            Volume of the CH3-tails of one lipid - default is POPC.
* ScatteringLengthOfOneMSP: [cm]     Scattering length of one belt protein - default is MSP1D1.
* ScatteringLengthOfHeadgroup: [cm]  Scattering length of one lipid headgroup - default is POPC.
* ScatteringLengthOfCH2Tail: [cm]    Scattering length of the CH2-chains of one lipid - default is POPC.
* ScatteringLengthOfCH3Tail: [cm]    Scattering length of the CH3-tails of one lipid - default is POPC.
* Roughness: []		                   Factor used to smear the interfaces of the nanodisc.
* Concentration: [mM]                Concentration of sample.
* RhoSolvent: [cm/AA^3]              Scattering length density of solvent - default is D2O.
* AbsorptionCrosssection: [1/m]      Absorption cross section of the sample.
* xwidth: [m]                        Dimension of component in the x-direction.
* yheight: [m]                       Dimension of component in the y-direction.
* zdepth: [m]                        Dimension of component in the z-direction.
* SampleToDetectorDistance: [m]      Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m]                Radius of the detector (for focusing the scattered neutrons).
* qMin: [AA^-1]                      Lowest q-value, for which a point is generated in the scattering profile
* qMax: [AA^-1]                      Highest q-value, for which a point is generated in the scattering profile
* NumberOfQBins: []		               Number of points generated in inital scattering profile.
*
* %E
*******************************************************************************/

DEFINE COMPONENT SANSNanodiscsFast



SETTING PARAMETERS (int NumberOfQBins = 200,
	AxisRatio = 1.4, NumberOfLipids = 130.0, AreaPerLipidHeadgroup = 65.0, HeightOfMSP = 24.0,
	VolumeOfOneMSP = 26296.5, VolumeOfHeadgroup = 319.0, VolumeOfCH2Tail = 818.8, VolumeOfCH3Tail = 108.6,
	ScatteringLengthOfOneMSP = 8.8E-10, ScatteringLengthOfHeadgroup = 7.05E-12, ScatteringLengthOfCH2Tail = -1.76E-12, ScatteringLengthOfCH3Tail = -9.15E-13,
	Roughness = 5.0, Concentration = 0.01, RhoSolvent = 6.4e-14, AbsorptionCrosssection = 0.0,
	xwidth, yheight, zdepth, SampleToDetectorDistance, DetectorRadius, qMin = 0.001, qMax = 1.0 )


DEPENDENCY " @GSLFLAGS@ "
NOACC

SHARE
%{
#include <gsl/gsl_sf_bessel.h>

// Functions used for compution the intensity from a given liposome
double FormfactorCylinder(double q, double MajorSemiAxis, double MinorSemiAxis, double Height, double Alpha, double Beta)
	{
		double const ProjectedRadius = sqrt(pow(MajorSemiAxis * sin(Beta), 2) + pow(MinorSemiAxis * cos(Beta), 2));

		double const Formfactor1 = j1(q * ProjectedRadius * sin(Alpha)) / (q * ProjectedRadius * sin(Alpha));
		double const Formfactor2 = sin(q * Height * cos(Alpha) / 2.0) / (q * Height * cos(Alpha) / 2.0);

		return 2 * Formfactor1 * Formfactor2;
	}

	double IntensityOfEmptyNanodiscs(double q, double MajorSemiAxis, double MinorSemiAxis, double ThicknessOfBelt,
									 double HeightOfBelt, double HeightOfLipids, double HeightOfTails, double HeightOfCH3,
									 double DeltaRhoBelt, double DeltaRhoHead, double DeltaRhoCH2Tail, double DeltaRhoCH3Tail)
	{
		// Declaration
		double Intensity;
		double IntensityPart;

		double AmplitudeOfBelt;
		double AmplitudeOfHeads;
		double AmplitudeOfCH2Tail;
		double AmplitudeOfCH3Tail;

		double FormfactorOfBelt;
		double FormfactorOfHeads;
		double FormfactorOfCH2Tail;
		double FormfactorOfCH3Tail;

		const double OuterMajorSemiAxis = MajorSemiAxis + ThicknessOfBelt;
		const double OuterMinorSemiAxis = MinorSemiAxis + ThicknessOfBelt;

		const double VolumeOfBelt    = PI * HeightOfBelt * OuterMajorSemiAxis * OuterMinorSemiAxis - PI * HeightOfBelt * MajorSemiAxis * MinorSemiAxis;
		const double VolumeOfHeads   = PI * HeightOfLipids * MajorSemiAxis * MinorSemiAxis         - PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis;
		const double VolumeOfCH2Tail = PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis          - PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis;
		const double VolumeOfCH3Tail = PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis;

		// Variables needed for integration over alpha
		int i;
		const int NumberOfStepsInAlpha = 50;
		double Alpha;
		const double AlphaMin = 0.0;
		const double AlphaMax = PI / 2.0;
		const double AlphaStep = (AlphaMax - AlphaMin) / (1.0 * NumberOfStepsInAlpha);

		// Variables needed in integration over beta
		int j;
		const int NumberOfStepsInBeta = 50;
		double Beta;
		const double BetaMin = 0.0;
		const double BetaMax = PI / 2.0;
		const double BetaStep = (BetaMax - BetaMin) / (1.0 * NumberOfStepsInBeta);

		// Computation
		Intensity = 0.0;

		for (i = 0; i < NumberOfStepsInAlpha; ++i) {
			Alpha = (i + 0.5) * AlphaStep;

			for (j = 0; j < NumberOfStepsInBeta; ++j) {
				Beta = (j + 0.5) * BetaStep;

				// Compute formfactors
				FormfactorOfBelt = (PI * HeightOfBelt * OuterMajorSemiAxis * OuterMinorSemiAxis * FormfactorCylinder(q, OuterMajorSemiAxis, OuterMinorSemiAxis, HeightOfBelt, Alpha, Beta) -
								    PI * HeightOfBelt * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfBelt, Alpha, Beta)) /
								   (PI * HeightOfBelt * OuterMajorSemiAxis * OuterMinorSemiAxis - PI * HeightOfBelt * MajorSemiAxis * MinorSemiAxis);

				FormfactorOfHeads = (PI * HeightOfLipids * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfLipids, Alpha, Beta) -
								     PI * HeightOfTails  * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfTails , Alpha, Beta)) /
								    (PI * HeightOfLipids * MajorSemiAxis * MinorSemiAxis - PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis);

				FormfactorOfCH2Tail = (PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfTails, Alpha, Beta) -
								       PI * HeightOfCH3   * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfCH3  , Alpha, Beta)) /
								      (PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis - PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis);

				FormfactorOfCH3Tail = FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfCH3, Alpha, Beta);

				// Compute amplitudes
				AmplitudeOfBelt    = DeltaRhoBelt * VolumeOfBelt * FormfactorOfBelt;
				AmplitudeOfHeads   = DeltaRhoHead * VolumeOfHeads * FormfactorOfHeads;
				AmplitudeOfCH2Tail = DeltaRhoCH2Tail * VolumeOfCH2Tail * FormfactorOfCH2Tail;
				AmplitudeOfCH3Tail = DeltaRhoCH3Tail * VolumeOfCH3Tail * FormfactorOfCH3Tail;

				// Perform integration
				IntensityPart = pow(AmplitudeOfBelt + AmplitudeOfHeads + AmplitudeOfCH2Tail + AmplitudeOfCH3Tail, 2);

				Intensity += 2.0 / PI * sin(Alpha) * IntensityPart * AlphaStep * BetaStep;
			}
		}

		return Intensity;
	}

%}


DECLARE
%{
// Declarations
double Absorption;
double NumberDensity;

// Curve used in linear
double *qArray;
double *IArray;
%}

INITIALIZE
%{
// Functions used for compution the intensity from a given liposome

>>>>>>> b6fb3daa6... move function declarations to SHARE

	// Declarations
	double RhoBelt;
	double RhoHead;
	double RhoCH2Tail;
	double RhoCH3Tail;

	double DeltaRhoHead;
	double DeltaRhoBelt;
	double DeltaRhoCH2Tail;
	double DeltaRhoCH3Tail;

	double MajorSemiAxis;
	double MinorSemiAxis;
	double ThicknessOfBelt;

	double HeightOfBelt;
	double HeightOfLipids;
	double HeightOfTails;
	double HeightOfCH3;

	double AreaOfLipids;
	// Declarations
	double Absorption;
	double q;
	double NumberDensity;

	// Curve used in linear
	double *qArray;
	double *IArray;


INITIALIZE
%{
	const double ScatteringLengthOfWater = 2.82E-12;
	const double VolumeOfWater = 30.0;

	const double qStep = (qMax - qMin) / (1.0 * NumberOfQBins);
	int i;
	double qDummy;

	// Rescale concentration into number of aggregates per m^3 times 10^-4
	NumberDensity = Concentration * 6.02214129e19;

	// Computations
	if (!xwidth || !yheight || !zdepth) {
		printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
	}

	Absorption = AbsorptionCrosssection;

	// Scattering properties of different components
	RhoBelt    = ScatteringLengthOfOneMSP    / VolumeOfOneMSP;
	RhoHead    = ScatteringLengthOfHeadgroup / VolumeOfHeadgroup;
	RhoCH2Tail = ScatteringLengthOfCH2Tail   / VolumeOfCH2Tail;
	RhoCH3Tail = ScatteringLengthOfCH3Tail   / VolumeOfCH3Tail;

	DeltaRhoBelt	= RhoBelt    - RhoSolvent;
	DeltaRhoHead    = RhoHead    - RhoSolvent;
	DeltaRhoCH2Tail = RhoCH2Tail - RhoSolvent;
	DeltaRhoCH3Tail = RhoCH3Tail - RhoSolvent;

	// Geometric properties of different components
	AreaOfLipids = NumberOfLipids * AreaPerLipidHeadgroup / 2.0;

	MinorSemiAxis = sqrt(AreaOfLipids / (PI * AxisRatio));
	MajorSemiAxis = MinorSemiAxis * AxisRatio;

	HeightOfLipids = 2.0 * (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail) / AreaPerLipidHeadgroup;
	HeightOfTails  = 2.0 * (VolumeOfCH2Tail + VolumeOfCH3Tail) / AreaPerLipidHeadgroup;
	HeightOfCH3    = 2.0 * VolumeOfCH3Tail / AreaPerLipidHeadgroup;

	ThicknessOfBelt = sqrt(pow(MinorSemiAxis + MajorSemiAxis, 2) / 4.0 + 2.0 * VolumeOfOneMSP / (PI * HeightOfMSP)) - (MajorSemiAxis + MinorSemiAxis) / 2.0;

	// Compute scattering from nanodiscs in predecided points
	qArray = (double *) calloc(NumberOfQBins, sizeof(double));
	IArray = (double *) calloc(NumberOfQBins, sizeof(double));

	for (i = 0; i < NumberOfQBins; ++i) {
		qDummy = qMin + (i + 0.5) * qStep;

		qArray[i] = qDummy;
	 	IArray[i] = IntensityOfEmptyNanodiscs(qDummy, MajorSemiAxis, MinorSemiAxis, ThicknessOfBelt, HeightOfMSP, HeightOfLipids,
											  HeightOfTails, HeightOfCH3, DeltaRhoBelt, DeltaRhoHead, DeltaRhoCH2Tail, DeltaRhoCH3Tail);
	}
%}

TRACE
%{
	// Declarations
	double t0;
	double t1;
	double l_full;
	double l;
	double l1;
	double Intensity;
	double Weight;
	double IntensityPart;
	double SolidAngle;
	double q;
	double qx;
	double qy;
	double qz;
	double v;
	double dt;
	double vx_i;
	double vy_i;
	double vz_i;
	char Intersect = 0;
	int i;
	double Slope;
	double Offset;

	// Computation
	Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);

	if (Intersect) {

		if (t0 < 0.0) {
			fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
			ABSORB;
    	}

		// Compute properties of neutron
		v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
		l_full = v * (t1 - t0);
		dt = rand01() * (t1 - t0) + t0;
		PROP_DT(dt);
	    l = v * (dt - t0);

		// Store properties of incoming neutron
		vx_i = vx;
		vy_i = vy;
		vz_i = vz;

		// Generate new direction of neutron
		randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);

		NORM(vx, vy, vz);

		vx *= v;
		vy *= v;
		vz *= v;

		// Compute q
		qx = V2K * (vx_i - vx);
		qy = V2K * (vy_i - vy);
		qz = V2K * (vz_i - vz);

		q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));

		// Discard neutron, if q is out of range
		if ((q < qArray[0]) || (q > qArray[NumberOfQBins - 1])) {
		    ABSORB;
		}

		// Find the first value of q in the curve larger than that of the neutron
		i = 1;

		while (q > qArray[i]) {
			++i;
		}

		// Do a linear interpolation
		l1 = v * t1;

		Slope = (IArray[i] - IArray[i - 1]) / (qArray[i] - qArray[i - 1]);
		Offset = IArray[i] - Slope * qArray[i];

		Intensity = (Slope * q + Offset) * exp(- pow(q * Roughness, 2));

		p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1) / v);

		SCATTER;
	}
%}

MCDISPLAY
%{
  box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}

END