1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*******************************************************************************
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SANSNanodiscsFast
*
* %I
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample of monodisperse phospholipid bilayer nanodiscs in solution (water).
*
* %D
* A component very similar to EmptyNanodiscs.comp - however, the scattering
* profile is only computed once, and linear interpolation is the used to
* simulate the instrument.
*
* %P
* AxisRatio: [] Axis ratio of the bilayer patch.
* NumberOfLipids: [] Number of lipids per nanodisc.
* AreaPerLipidHeadgroup: [AA^2] Area per lipid headgroup - default is POPC.
* HeightOfMSP: [AA] Height of the belt protein - default is MSP1D1.
* VolumeOfOneMSP: [AA^3] Volume of one belt protein - default is MSP1D1.
* VolumeOfHeadgroup: [AA^3] Volume of one lipid headgroup - default is POPC.
* VolumeOfCH2Tail: [AA^3] Volume of the CH2-chains of one lipid - default is POPC.
* VolumeOfCH3Tail: [AA^3] Volume of the CH3-tails of one lipid - default is POPC.
* ScatteringLengthOfOneMSP: [cm] Scattering length of one belt protein - default is MSP1D1.
* ScatteringLengthOfHeadgroup: [cm] Scattering length of one lipid headgroup - default is POPC.
* ScatteringLengthOfCH2Tail: [cm] Scattering length of the CH2-chains of one lipid - default is POPC.
* ScatteringLengthOfCH3Tail: [cm] Scattering length of the CH3-tails of one lipid - default is POPC.
* Roughness: [] Factor used to smear the interfaces of the nanodisc.
* Concentration: [mM] Concentration of sample.
* RhoSolvent: [cm/AA^3] Scattering length density of solvent - default is D2O.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m] Dimension of component in the x-direction.
* yheight: [m] Dimension of component in the y-direction.
* zdepth: [m] Dimension of component in the z-direction.
* SampleToDetectorDistance: [m] Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m] Radius of the detector (for focusing the scattered neutrons).
* qMin: [AA^-1] Lowest q-value, for which a point is generated in the scattering profile
* qMax: [AA^-1] Highest q-value, for which a point is generated in the scattering profile
* NumberOfQBins: [] Number of points generated in inital scattering profile.
*
* %E
*******************************************************************************/
DEFINE COMPONENT SANSNanodiscsFast
SETTING PARAMETERS (int NumberOfQBins = 200,
AxisRatio = 1.4, NumberOfLipids = 130.0, AreaPerLipidHeadgroup = 65.0, HeightOfMSP = 24.0,
VolumeOfOneMSP = 26296.5, VolumeOfHeadgroup = 319.0, VolumeOfCH2Tail = 818.8, VolumeOfCH3Tail = 108.6,
ScatteringLengthOfOneMSP = 8.8E-10, ScatteringLengthOfHeadgroup = 7.05E-12, ScatteringLengthOfCH2Tail = -1.76E-12, ScatteringLengthOfCH3Tail = -9.15E-13,
Roughness = 5.0, Concentration = 0.01, RhoSolvent = 6.4e-14, AbsorptionCrosssection = 0.0,
xwidth, yheight, zdepth, SampleToDetectorDistance, DetectorRadius, qMin = 0.001, qMax = 1.0 )
DEPENDENCY " @GSLFLAGS@ "
NOACC
SHARE
%{
#include <gsl/gsl_sf_bessel.h>
// Functions used for compution the intensity from a given liposome
double FormfactorCylinder(double q, double MajorSemiAxis, double MinorSemiAxis, double Height, double Alpha, double Beta)
{
double const ProjectedRadius = sqrt(pow(MajorSemiAxis * sin(Beta), 2) + pow(MinorSemiAxis * cos(Beta), 2));
double const Formfactor1 = j1(q * ProjectedRadius * sin(Alpha)) / (q * ProjectedRadius * sin(Alpha));
double const Formfactor2 = sin(q * Height * cos(Alpha) / 2.0) / (q * Height * cos(Alpha) / 2.0);
return 2 * Formfactor1 * Formfactor2;
}
double IntensityOfEmptyNanodiscs(double q, double MajorSemiAxis, double MinorSemiAxis, double ThicknessOfBelt,
double HeightOfBelt, double HeightOfLipids, double HeightOfTails, double HeightOfCH3,
double DeltaRhoBelt, double DeltaRhoHead, double DeltaRhoCH2Tail, double DeltaRhoCH3Tail)
{
// Declaration
double Intensity;
double IntensityPart;
double AmplitudeOfBelt;
double AmplitudeOfHeads;
double AmplitudeOfCH2Tail;
double AmplitudeOfCH3Tail;
double FormfactorOfBelt;
double FormfactorOfHeads;
double FormfactorOfCH2Tail;
double FormfactorOfCH3Tail;
const double OuterMajorSemiAxis = MajorSemiAxis + ThicknessOfBelt;
const double OuterMinorSemiAxis = MinorSemiAxis + ThicknessOfBelt;
const double VolumeOfBelt = PI * HeightOfBelt * OuterMajorSemiAxis * OuterMinorSemiAxis - PI * HeightOfBelt * MajorSemiAxis * MinorSemiAxis;
const double VolumeOfHeads = PI * HeightOfLipids * MajorSemiAxis * MinorSemiAxis - PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis;
const double VolumeOfCH2Tail = PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis - PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis;
const double VolumeOfCH3Tail = PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis;
// Variables needed for integration over alpha
int i;
const int NumberOfStepsInAlpha = 50;
double Alpha;
const double AlphaMin = 0.0;
const double AlphaMax = PI / 2.0;
const double AlphaStep = (AlphaMax - AlphaMin) / (1.0 * NumberOfStepsInAlpha);
// Variables needed in integration over beta
int j;
const int NumberOfStepsInBeta = 50;
double Beta;
const double BetaMin = 0.0;
const double BetaMax = PI / 2.0;
const double BetaStep = (BetaMax - BetaMin) / (1.0 * NumberOfStepsInBeta);
// Computation
Intensity = 0.0;
for (i = 0; i < NumberOfStepsInAlpha; ++i) {
Alpha = (i + 0.5) * AlphaStep;
for (j = 0; j < NumberOfStepsInBeta; ++j) {
Beta = (j + 0.5) * BetaStep;
// Compute formfactors
FormfactorOfBelt = (PI * HeightOfBelt * OuterMajorSemiAxis * OuterMinorSemiAxis * FormfactorCylinder(q, OuterMajorSemiAxis, OuterMinorSemiAxis, HeightOfBelt, Alpha, Beta) -
PI * HeightOfBelt * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfBelt, Alpha, Beta)) /
(PI * HeightOfBelt * OuterMajorSemiAxis * OuterMinorSemiAxis - PI * HeightOfBelt * MajorSemiAxis * MinorSemiAxis);
FormfactorOfHeads = (PI * HeightOfLipids * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfLipids, Alpha, Beta) -
PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfTails , Alpha, Beta)) /
(PI * HeightOfLipids * MajorSemiAxis * MinorSemiAxis - PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis);
FormfactorOfCH2Tail = (PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfTails, Alpha, Beta) -
PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis * FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfCH3 , Alpha, Beta)) /
(PI * HeightOfTails * MajorSemiAxis * MinorSemiAxis - PI * HeightOfCH3 * MajorSemiAxis * MinorSemiAxis);
FormfactorOfCH3Tail = FormfactorCylinder(q, MajorSemiAxis, MinorSemiAxis, HeightOfCH3, Alpha, Beta);
// Compute amplitudes
AmplitudeOfBelt = DeltaRhoBelt * VolumeOfBelt * FormfactorOfBelt;
AmplitudeOfHeads = DeltaRhoHead * VolumeOfHeads * FormfactorOfHeads;
AmplitudeOfCH2Tail = DeltaRhoCH2Tail * VolumeOfCH2Tail * FormfactorOfCH2Tail;
AmplitudeOfCH3Tail = DeltaRhoCH3Tail * VolumeOfCH3Tail * FormfactorOfCH3Tail;
// Perform integration
IntensityPart = pow(AmplitudeOfBelt + AmplitudeOfHeads + AmplitudeOfCH2Tail + AmplitudeOfCH3Tail, 2);
Intensity += 2.0 / PI * sin(Alpha) * IntensityPart * AlphaStep * BetaStep;
}
}
return Intensity;
}
%}
DECLARE
%{
// Declarations
double Absorption;
double NumberDensity;
// Curve used in linear
double *qArray;
double *IArray;
%}
INITIALIZE
%{
// Functions used for compution the intensity from a given liposome
>>>>>>> b6fb3daa6... move function declarations to SHARE
// Declarations
double RhoBelt;
double RhoHead;
double RhoCH2Tail;
double RhoCH3Tail;
double DeltaRhoHead;
double DeltaRhoBelt;
double DeltaRhoCH2Tail;
double DeltaRhoCH3Tail;
double MajorSemiAxis;
double MinorSemiAxis;
double ThicknessOfBelt;
double HeightOfBelt;
double HeightOfLipids;
double HeightOfTails;
double HeightOfCH3;
double AreaOfLipids;
// Declarations
double Absorption;
double q;
double NumberDensity;
// Curve used in linear
double *qArray;
double *IArray;
INITIALIZE
%{
const double ScatteringLengthOfWater = 2.82E-12;
const double VolumeOfWater = 30.0;
const double qStep = (qMax - qMin) / (1.0 * NumberOfQBins);
int i;
double qDummy;
// Rescale concentration into number of aggregates per m^3 times 10^-4
NumberDensity = Concentration * 6.02214129e19;
// Computations
if (!xwidth || !yheight || !zdepth) {
printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
}
Absorption = AbsorptionCrosssection;
// Scattering properties of different components
RhoBelt = ScatteringLengthOfOneMSP / VolumeOfOneMSP;
RhoHead = ScatteringLengthOfHeadgroup / VolumeOfHeadgroup;
RhoCH2Tail = ScatteringLengthOfCH2Tail / VolumeOfCH2Tail;
RhoCH3Tail = ScatteringLengthOfCH3Tail / VolumeOfCH3Tail;
DeltaRhoBelt = RhoBelt - RhoSolvent;
DeltaRhoHead = RhoHead - RhoSolvent;
DeltaRhoCH2Tail = RhoCH2Tail - RhoSolvent;
DeltaRhoCH3Tail = RhoCH3Tail - RhoSolvent;
// Geometric properties of different components
AreaOfLipids = NumberOfLipids * AreaPerLipidHeadgroup / 2.0;
MinorSemiAxis = sqrt(AreaOfLipids / (PI * AxisRatio));
MajorSemiAxis = MinorSemiAxis * AxisRatio;
HeightOfLipids = 2.0 * (VolumeOfHeadgroup + VolumeOfCH2Tail + VolumeOfCH3Tail) / AreaPerLipidHeadgroup;
HeightOfTails = 2.0 * (VolumeOfCH2Tail + VolumeOfCH3Tail) / AreaPerLipidHeadgroup;
HeightOfCH3 = 2.0 * VolumeOfCH3Tail / AreaPerLipidHeadgroup;
ThicknessOfBelt = sqrt(pow(MinorSemiAxis + MajorSemiAxis, 2) / 4.0 + 2.0 * VolumeOfOneMSP / (PI * HeightOfMSP)) - (MajorSemiAxis + MinorSemiAxis) / 2.0;
// Compute scattering from nanodiscs in predecided points
qArray = (double *) calloc(NumberOfQBins, sizeof(double));
IArray = (double *) calloc(NumberOfQBins, sizeof(double));
for (i = 0; i < NumberOfQBins; ++i) {
qDummy = qMin + (i + 0.5) * qStep;
qArray[i] = qDummy;
IArray[i] = IntensityOfEmptyNanodiscs(qDummy, MajorSemiAxis, MinorSemiAxis, ThicknessOfBelt, HeightOfMSP, HeightOfLipids,
HeightOfTails, HeightOfCH3, DeltaRhoBelt, DeltaRhoHead, DeltaRhoCH2Tail, DeltaRhoCH3Tail);
}
%}
TRACE
%{
// Declarations
double t0;
double t1;
double l_full;
double l;
double l1;
double Intensity;
double Weight;
double IntensityPart;
double SolidAngle;
double q;
double qx;
double qy;
double qz;
double v;
double dt;
double vx_i;
double vy_i;
double vz_i;
char Intersect = 0;
int i;
double Slope;
double Offset;
// Computation
Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
if (Intersect) {
if (t0 < 0.0) {
fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
ABSORB;
}
// Compute properties of neutron
v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
l_full = v * (t1 - t0);
dt = rand01() * (t1 - t0) + t0;
PROP_DT(dt);
l = v * (dt - t0);
// Store properties of incoming neutron
vx_i = vx;
vy_i = vy;
vz_i = vz;
// Generate new direction of neutron
randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
// Compute q
qx = V2K * (vx_i - vx);
qy = V2K * (vy_i - vy);
qz = V2K * (vz_i - vz);
q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));
// Discard neutron, if q is out of range
if ((q < qArray[0]) || (q > qArray[NumberOfQBins - 1])) {
ABSORB;
}
// Find the first value of q in the curve larger than that of the neutron
i = 1;
while (q > qArray[i]) {
++i;
}
// Do a linear interpolation
l1 = v * t1;
Slope = (IArray[i] - IArray[i - 1]) / (qArray[i] - qArray[i - 1]);
Offset = IArray[i] - Slope * qArray[i];
Intensity = (Slope * q + Offset) * exp(- pow(q * Roughness, 2));
p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1) / v);
SCATTER;
}
%}
MCDISPLAY
%{
box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}
END
|