File: SANSPDB.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (533 lines) | stat: -rw-r--r-- 13,175 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*******************************************************************************
**McStas, neutron ray-tracing package
*         Copyright 1997-2003, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SANSPDB
*
* %I
* Written by:**Martin Cramer Pedersen (mcpe@nbi.dk) and Søren Kynde (kynde@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample describing a thin solution of proteins. This components must be compiled
* with the -lgsl and -lgslcblas flags (and possibly linked to the appropriate
* libraries).
*
* %D
* This components expands the formfactor amplitude of the protein on spherical
* harmonics and computes the scattering profile using these. The expansion is
* done on amino-acid level and does not take hydration layer into account.
* The component must have a valid .pdb-file as an argument.
*
* %P
* RhoSolvent: [AA]               Scattering length density of the buffer.
* Concentration: [mM]            Concentration of sample.
* AbsorptionCrosssection: [1/m]  Absorption cross section of the sample.
* xwidth: [m]                    Dimension of component in the x-direction.
* yheight: [m]                   Dimension of component in the y-direction.
* zdepth: [m]                    Dimension of component in the z-direction.
* SampleToDetectorDistance: [m]  Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m]            Radius of the detector (for focusing the scattered neutrons).
* PDBFilepath: []		Path to the file describing the high resolution structure of the protein.
*
* %E
*******************************************************************************/

DEFINE COMPONENT SANSPDB



SETTING PARAMETERS (RhoSolvent = 6.4e-14, Concentration = 0.01, AbsorptionCrosssection = 0.0, string PDBFilepath="PDBfile.pdb",
		    xwidth=0, yheight=0, zdepth=0, SampleToDetectorDistance=1, DetectorRadius=1)


DEPENDENCY " @GSLFLAGS@ "
NOACC

SHARE
%{
	#include <gsl/gsl_sf_legendre.h>
	#include <gsl/gsl_sf_bessel.h>
	#include <complex.h>
        #define OrderOfHarmonics 21

	// Simple mathematical functions
	int Sign(double x) {
		int Sign;

		if (x > 0) {
			Sign = 1;
		} else if (x < 0) {
			Sign = -1;
		} else {
			Sign = 0;
		}
		return Sign;
	}

	double complex Polar(double R, double Concentration)
	{
		double complex Polar;

		Polar = R * (cos(Concentration) + _Complex_I * sin(Concentration));

		return Polar;
	}


        // Protein structs                                                                                                                                                                                                                                                          
        struct Bead
        {
                double x;
                double y;
                double z;

                double xv;
                double yv;
                double zv;

                double xa;
                double ya;
                double za;

                char *NameOfResidue;

                double Volume;
		double ScatteringLength;
        };
        typedef struct Bead BeadStruct;
        struct Protein
        {
         	BeadStruct *Beads;
                int NumberOfResidues;
        };
	typedef struct Protein ProteinStruct;



	// Function used to compute scattering from protein
	void ExpandStructure(double complex **Matrix, ProteinStruct *Protein, int ResidueID, double q, double RhoSolvent)
	{
		// Dummy integers
		int i;
		int j;

		// Arrays used for storing Legendre and Bessel function values
		double Legendre[OrderOfHarmonics + 1];
		double Bessel[OrderOfHarmonics + 1];

		// Residue information
		const double Volume = Protein->Beads[ResidueID].Volume;
		const double DeltaRhoProtein = Protein->Beads[ResidueID].ScatteringLength - Volume * RhoSolvent;
		const double x = (Protein->Beads[ResidueID].x * Protein->Beads[ResidueID].ScatteringLength - RhoSolvent * Volume * Protein->Beads[ResidueID].xv) / DeltaRhoProtein;
		const double y = (Protein->Beads[ResidueID].y * Protein->Beads[ResidueID].ScatteringLength - RhoSolvent * Volume * Protein->Beads[ResidueID].yv) / DeltaRhoProtein;
		const double z = (Protein->Beads[ResidueID].z * Protein->Beads[ResidueID].ScatteringLength - RhoSolvent * Volume * Protein->Beads[ResidueID].zv) / DeltaRhoProtein;

		// Convert bead position to spherical coordinates
		const double Radius = sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2));
		const double Theta  = acos(z / Radius);
		const double Concentration    = acos(x / (Radius * sin(Theta))) * Sign(y);

		// Expand protein structure on harmonics
		gsl_sf_bessel_jl_array(OrderOfHarmonics, q * Radius, Bessel);

		for (i = 0; i <= OrderOfHarmonics; ++i) {
		    gsl_sf_legendre_array(OrderOfHarmonics, i, cos(Theta), &Legendre[i]);

		    for(j = i; j <= OrderOfHarmonics; ++j) {
		       Matrix[j][i] += sqrt(4.0 * PI) * cpow(_Complex_I, j) * DeltaRhoProtein * Bessel[j] * Legendre[j] * Polar(1.0, -i * Concentration);
		    }
		}
	}

	// Function used to generate intensity for a given q-value
	double ComputeIntensity(double complex **Matrix)
	{
		// Declarations
		int i;
		int j;
		double Intensity = 0.0;

		// Computation
		for (i = 0; i <= OrderOfHarmonics; ++i) {
		    for (j = 0; j <= i; ++j) {
		        Intensity += ((j > 0) + 1.0) * pow(cabs(Matrix[i][j]), 2);
		    }
		}

		return Intensity;
	}

	// Function used to reinitialize a matrix
	void ResetMatrix(double complex ** Matrix, int Size)
	{
		int i;
		int j;

		for (i = 0; i <= Size; ++i) {

		    for (j = 0; j <= Size; ++j) {
		        Matrix[i][j] = 0.0;
		    }
		}
	}

	// Function used to determine the number of residues in the .pdb-file
	int CountResidues(char PDBFilepath[256])
	{
		// Declarations
		double Dummy1;
		double Dummy2;
		double Dummy3;
		char Line[256];
		char DummyChar;
		char Atom;
		int NumberOfResidues = 0;
		int ResidueID;
		int PreviousResidueID = 0;
		FILE *PDBFile;

		// I/O
		PDBFile = fopen(PDBFilepath, "r");

		if (PDBFile == NULL) {
			printf("Cannot open %s... \n", PDBFilepath);
		} else {
			printf(".pdb-file located... \n");
		}

		while (fgets(Line, sizeof(Line), PDBFile) != NULL) {
		    ResidueID = 0;

		    if (sscanf(Line, "ATOM%*18c%d%*4c%lf%lf%lf", &ResidueID, &Dummy1, &Dummy2, &Dummy3) == 4) {

		        if (ResidueID != PreviousResidueID && ResidueID != 0) {
		            ++NumberOfResidues;
				}

		        PreviousResidueID = ResidueID;
		    }
		}

		fclose(PDBFile);
		printf("Calculating scattering from %d residues...\n", NumberOfResidues);

        return NumberOfResidues;
	}

	// Declaration of the protein struct
	void InitializeProtein(ProteinStruct *Protein, int NumberOfResiduesInFile)
	{
		Protein->NumberOfResidues = NumberOfResiduesInFile;
		Protein->Beads = calloc((size_t) NumberOfResiduesInFile, sizeof(BeadStruct));
	}

	// Function used to read .pdb-file
	void ReadAminoPDB(char PDBFilename[256], ProteinStruct *Protein)
	{
		// Declarations and input
		int NumberOfResidues = Protein->NumberOfResidues;
		BeadStruct *Residue = Protein->Beads;
		FILE *PDBFile;

		int i = 0;
		int PreviousResidueID = 0;
		int ResidueID = 0;

		double Weight = 0.0;
		double W = 0.0;

		double Aweight = 0.0;
		double A = 0.0;

		double x;
		double y;
		double z;

		double X = 0.0;
		double Y = 0.0;
		double Z = 0.0;

		double XA = 0.0;
		double YA = 0.0;
		double ZA = 0.0;

		char Atom;

		char Line[256];
		char Buffer[256];
		char DummyChar;

		// Atomic weighing factors
		const double WH = 5.15;
		const double WC = 16.44;
		const double WN = 2.49;
		const double WO = 9.13;
		const double WS = 19.86;
		const double WP = 5.73;

		// Scattering lengths
		const double AH =  - 3.741e-15;
		const double AD =    6.674e-15;
		const double AC =    6.648e-15;
		const double AN =    9.360e-15;
		const double AO =    5.805e-15;
		const double AP =    5.130e-15;
		const double AS =    2.847e-15;

		// Program
		if ((PDBFile = fopen(PDBFilename, "r")) == 0) {
		    printf("Cannot open file: %s. \n", PDBFilename);
		}

		Residue[i].NameOfResidue = (char *) calloc(3, sizeof(char));

		while (fgets(Buffer, sizeof(Buffer), PDBFile) != NULL) {
		    Atom = 0;
			ResidueID = 0;

			sscanf(Buffer,"ATOM%*9c%c%*8c%d%*4c%lf%lf%lf%*23c%c", &DummyChar, &ResidueID, &x, &y, &z, &Atom);

		    if (ResidueID != PreviousResidueID && ResidueID != 0) {

		        if (PreviousResidueID != 0) {

					// Assign center of scattering
				    Residue[i].xv = X / Weight;
					Residue[i].yv = Y / Weight;
					Residue[i].zv = Z / Weight;

					// Assign center of mass
				    Residue[i].x = XA / Aweight;
					Residue[i].y = YA / Aweight;
					Residue[i].z = ZA / Aweight;

					// Other residue attributes
				    Residue[i].Volume = Weight;
				    Residue[i].ScatteringLength = Aweight;

				    X = 0.0;
					Y = 0.0;
					Z = 0.0;
					Weight = 0.0;

					XA = 0.0;
					YA = 0.0;
					ZA = 0.0;
					Aweight = 0.0;

				    ++i;

				    if (i < NumberOfResidues) {
				        Residue[i].NameOfResidue = (char *) calloc(3, sizeof(char));
				    }

				}

		        PreviousResidueID = ResidueID;
		    }

			// Finish the final amino acid
			if (i == NumberOfResidues - 1) {
				Residue[i].xv = X / Weight;
				Residue[i].yv = Y / Weight;
				Residue[i].zv = Z / Weight;

				// Assign center of mass
				Residue[i].x = XA / Aweight;
				Residue[i].y = YA / Aweight;
				Residue[i].z = ZA / Aweight;

				// Other residue attributes
				Residue[i].Volume = Weight;
				Residue[i].ScatteringLength = Aweight;
			}

		    sscanf(Buffer, "ATOM%*9cCA%*2c%*s%*10c%lf%lf%lf", &Residue[i].xa, &Residue[i].ya, &Residue[i].za);
		    sscanf(Buffer, "ATOM%*13c%s", Residue[i].NameOfResidue);

		    switch(Atom) {
		        case 'C':
		            A = AC;
		            W = WC;
		        break;

		        case 'N':
		            A = AN;
		            W = WN;
		        break;

		        case 'O':
		            A = AO;
		            W = WO;
		        break;

		        case 'S':
		            A = AS;
		            W = WS;
		        break;

		        case 'H':
		            A = AH;
		            W = WH;
		        break;

		        case 'P':
		            A = AP;
		            W = WP;
		        break;

		        default:
		            A = 0.0;
		            W = 0.0;
		    }

		    Weight += W;
		    Aweight += A;

		    X += W * x;
		    Y += W * y;
		    Z += W * z;

		    XA += A * x;
		    YA += A * y;
		    ZA += A * z;
		}

		fclose(PDBFile);
	}


%}

DECLARE
%{
	// Declarations
	double Absorption;
	double NumberDensity;

	// Protein properties
	double complex **Matrix;
	int NumberOfResidues;
	ProteinStruct Protein;
%}

INITIALIZE
%{
	// Rescale concentration into number of aggregates per m^3 times 10^-4
	NumberDensity = Concentration * 6.02214129e19;


	// Standard sample handling
	if (!xwidth || !yheight || !zdepth) {
		printf("%s: Sample has no volume - check parameters...! \n", NAME_CURRENT_COMP);
	}

	Absorption = AbsorptionCrosssection;

	printf("Initializing protein structure...\n");
        NumberOfResidues = CountResidues(PDBFilepath);
	InitializeProtein(&Protein, NumberOfResidues);

	int i;
	Matrix = (double complex **) calloc(OrderOfHarmonics+1,sizeof(double complex *));
	for (i = 0; i <= OrderOfHarmonics; ++i) {
	  Matrix[i] = (double complex *) calloc(OrderOfHarmonics+1,sizeof(double complex));
	}
	
	printf("Creating protein structure...\n");
	ReadAminoPDB(PDBFilepath, &Protein);

	printf("Initializations complete...\n");
%}

TRACE
%{
	// Declarations
	double t0;
	double t1;
	double l_full;
	double l;
	double l1;
	double q;
	double Intensity;
	double Weight;
	double IntensityPart;
	double SolidAngle;
	double qx;
	double qy;
	double qz;
	double v;
	double dt;
	double vx_i;
	double vy_i;
	double vz_i;
	char Intersect = 0;
	double Slope;
	double Offset;
	int i;

	// Computation
	Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);

	if (Intersect) {

		if (t0 < 0.0) {
			fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
			ABSORB;
    	}

		// Compute properties of neutron
		v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
		l_full = v * (t1 - t0);
		dt = rand01() * (t1 - t0) + t0;
		PROP_DT(dt);
	    l = v * (dt - t0);

		// Store properties of incoming neutron
		vx_i = vx;
		vy_i = vy;
		vz_i = vz;

		// Generate new direction of neutron
		randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);

		NORM(vx, vy, vz);

		vx *= v;
		vy *= v;
		vz *= v;

		// Compute q
		qx = V2K * (vx_i - vx);
		qy = V2K * (vy_i - vy);
		qz = V2K * (vz_i - vz);

		q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));

		// Compute scattering for a given q-value
		ResetMatrix(Matrix, OrderOfHarmonics);

		for (i = 0; i < NumberOfResidues; ++i) {
			ExpandStructure(Matrix, &Protein, i, q, RhoSolvent);
		}

	 	Intensity = ComputeIntensity(Matrix);

		// Compute new weight
		l1 = v * t1;

		p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1) / v);

		SCATTER;
	}
%}

MCDISPLAY
%{
  box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}

END