1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
/*******************************************************************************
**McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SANSPDB
*
* %I
* Written by:**Martin Cramer Pedersen (mcpe@nbi.dk) and Søren Kynde (kynde@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A sample describing a thin solution of proteins. This components must be compiled
* with the -lgsl and -lgslcblas flags (and possibly linked to the appropriate
* libraries).
*
* %D
* This components expands the formfactor amplitude of the protein on spherical
* harmonics and computes the scattering profile using these. The expansion is
* done on amino-acid level and does not take hydration layer into account.
* The component must have a valid .pdb-file as an argument.
*
* %P
* RhoSolvent: [AA] Scattering length density of the buffer.
* Concentration: [mM] Concentration of sample.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m] Dimension of component in the x-direction.
* yheight: [m] Dimension of component in the y-direction.
* zdepth: [m] Dimension of component in the z-direction.
* SampleToDetectorDistance: [m] Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m] Radius of the detector (for focusing the scattered neutrons).
* PDBFilepath: [] Path to the file describing the high resolution structure of the protein.
*
* %E
*******************************************************************************/
DEFINE COMPONENT SANSPDB
SETTING PARAMETERS (RhoSolvent = 6.4e-14, Concentration = 0.01, AbsorptionCrosssection = 0.0, string PDBFilepath="PDBfile.pdb",
xwidth=0, yheight=0, zdepth=0, SampleToDetectorDistance=1, DetectorRadius=1)
DEPENDENCY " @GSLFLAGS@ "
NOACC
SHARE
%{
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_sf_bessel.h>
#include <complex.h>
#define OrderOfHarmonics 21
// Simple mathematical functions
int Sign(double x) {
int Sign;
if (x > 0) {
Sign = 1;
} else if (x < 0) {
Sign = -1;
} else {
Sign = 0;
}
return Sign;
}
double complex Polar(double R, double Concentration)
{
double complex Polar;
Polar = R * (cos(Concentration) + _Complex_I * sin(Concentration));
return Polar;
}
// Protein structs
struct Bead
{
double x;
double y;
double z;
double xv;
double yv;
double zv;
double xa;
double ya;
double za;
char *NameOfResidue;
double Volume;
double ScatteringLength;
};
typedef struct Bead BeadStruct;
struct Protein
{
BeadStruct *Beads;
int NumberOfResidues;
};
typedef struct Protein ProteinStruct;
// Function used to compute scattering from protein
void ExpandStructure(double complex **Matrix, ProteinStruct *Protein, int ResidueID, double q, double RhoSolvent)
{
// Dummy integers
int i;
int j;
// Arrays used for storing Legendre and Bessel function values
double Legendre[OrderOfHarmonics + 1];
double Bessel[OrderOfHarmonics + 1];
// Residue information
const double Volume = Protein->Beads[ResidueID].Volume;
const double DeltaRhoProtein = Protein->Beads[ResidueID].ScatteringLength - Volume * RhoSolvent;
const double x = (Protein->Beads[ResidueID].x * Protein->Beads[ResidueID].ScatteringLength - RhoSolvent * Volume * Protein->Beads[ResidueID].xv) / DeltaRhoProtein;
const double y = (Protein->Beads[ResidueID].y * Protein->Beads[ResidueID].ScatteringLength - RhoSolvent * Volume * Protein->Beads[ResidueID].yv) / DeltaRhoProtein;
const double z = (Protein->Beads[ResidueID].z * Protein->Beads[ResidueID].ScatteringLength - RhoSolvent * Volume * Protein->Beads[ResidueID].zv) / DeltaRhoProtein;
// Convert bead position to spherical coordinates
const double Radius = sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2));
const double Theta = acos(z / Radius);
const double Concentration = acos(x / (Radius * sin(Theta))) * Sign(y);
// Expand protein structure on harmonics
gsl_sf_bessel_jl_array(OrderOfHarmonics, q * Radius, Bessel);
for (i = 0; i <= OrderOfHarmonics; ++i) {
gsl_sf_legendre_array(OrderOfHarmonics, i, cos(Theta), &Legendre[i]);
for(j = i; j <= OrderOfHarmonics; ++j) {
Matrix[j][i] += sqrt(4.0 * PI) * cpow(_Complex_I, j) * DeltaRhoProtein * Bessel[j] * Legendre[j] * Polar(1.0, -i * Concentration);
}
}
}
// Function used to generate intensity for a given q-value
double ComputeIntensity(double complex **Matrix)
{
// Declarations
int i;
int j;
double Intensity = 0.0;
// Computation
for (i = 0; i <= OrderOfHarmonics; ++i) {
for (j = 0; j <= i; ++j) {
Intensity += ((j > 0) + 1.0) * pow(cabs(Matrix[i][j]), 2);
}
}
return Intensity;
}
// Function used to reinitialize a matrix
void ResetMatrix(double complex ** Matrix, int Size)
{
int i;
int j;
for (i = 0; i <= Size; ++i) {
for (j = 0; j <= Size; ++j) {
Matrix[i][j] = 0.0;
}
}
}
// Function used to determine the number of residues in the .pdb-file
int CountResidues(char PDBFilepath[256])
{
// Declarations
double Dummy1;
double Dummy2;
double Dummy3;
char Line[256];
char DummyChar;
char Atom;
int NumberOfResidues = 0;
int ResidueID;
int PreviousResidueID = 0;
FILE *PDBFile;
// I/O
PDBFile = fopen(PDBFilepath, "r");
if (PDBFile == NULL) {
printf("Cannot open %s... \n", PDBFilepath);
} else {
printf(".pdb-file located... \n");
}
while (fgets(Line, sizeof(Line), PDBFile) != NULL) {
ResidueID = 0;
if (sscanf(Line, "ATOM%*18c%d%*4c%lf%lf%lf", &ResidueID, &Dummy1, &Dummy2, &Dummy3) == 4) {
if (ResidueID != PreviousResidueID && ResidueID != 0) {
++NumberOfResidues;
}
PreviousResidueID = ResidueID;
}
}
fclose(PDBFile);
printf("Calculating scattering from %d residues...\n", NumberOfResidues);
return NumberOfResidues;
}
// Declaration of the protein struct
void InitializeProtein(ProteinStruct *Protein, int NumberOfResiduesInFile)
{
Protein->NumberOfResidues = NumberOfResiduesInFile;
Protein->Beads = calloc((size_t) NumberOfResiduesInFile, sizeof(BeadStruct));
}
// Function used to read .pdb-file
void ReadAminoPDB(char PDBFilename[256], ProteinStruct *Protein)
{
// Declarations and input
int NumberOfResidues = Protein->NumberOfResidues;
BeadStruct *Residue = Protein->Beads;
FILE *PDBFile;
int i = 0;
int PreviousResidueID = 0;
int ResidueID = 0;
double Weight = 0.0;
double W = 0.0;
double Aweight = 0.0;
double A = 0.0;
double x;
double y;
double z;
double X = 0.0;
double Y = 0.0;
double Z = 0.0;
double XA = 0.0;
double YA = 0.0;
double ZA = 0.0;
char Atom;
char Line[256];
char Buffer[256];
char DummyChar;
// Atomic weighing factors
const double WH = 5.15;
const double WC = 16.44;
const double WN = 2.49;
const double WO = 9.13;
const double WS = 19.86;
const double WP = 5.73;
// Scattering lengths
const double AH = - 3.741e-15;
const double AD = 6.674e-15;
const double AC = 6.648e-15;
const double AN = 9.360e-15;
const double AO = 5.805e-15;
const double AP = 5.130e-15;
const double AS = 2.847e-15;
// Program
if ((PDBFile = fopen(PDBFilename, "r")) == 0) {
printf("Cannot open file: %s. \n", PDBFilename);
}
Residue[i].NameOfResidue = (char *) calloc(3, sizeof(char));
while (fgets(Buffer, sizeof(Buffer), PDBFile) != NULL) {
Atom = 0;
ResidueID = 0;
sscanf(Buffer,"ATOM%*9c%c%*8c%d%*4c%lf%lf%lf%*23c%c", &DummyChar, &ResidueID, &x, &y, &z, &Atom);
if (ResidueID != PreviousResidueID && ResidueID != 0) {
if (PreviousResidueID != 0) {
// Assign center of scattering
Residue[i].xv = X / Weight;
Residue[i].yv = Y / Weight;
Residue[i].zv = Z / Weight;
// Assign center of mass
Residue[i].x = XA / Aweight;
Residue[i].y = YA / Aweight;
Residue[i].z = ZA / Aweight;
// Other residue attributes
Residue[i].Volume = Weight;
Residue[i].ScatteringLength = Aweight;
X = 0.0;
Y = 0.0;
Z = 0.0;
Weight = 0.0;
XA = 0.0;
YA = 0.0;
ZA = 0.0;
Aweight = 0.0;
++i;
if (i < NumberOfResidues) {
Residue[i].NameOfResidue = (char *) calloc(3, sizeof(char));
}
}
PreviousResidueID = ResidueID;
}
// Finish the final amino acid
if (i == NumberOfResidues - 1) {
Residue[i].xv = X / Weight;
Residue[i].yv = Y / Weight;
Residue[i].zv = Z / Weight;
// Assign center of mass
Residue[i].x = XA / Aweight;
Residue[i].y = YA / Aweight;
Residue[i].z = ZA / Aweight;
// Other residue attributes
Residue[i].Volume = Weight;
Residue[i].ScatteringLength = Aweight;
}
sscanf(Buffer, "ATOM%*9cCA%*2c%*s%*10c%lf%lf%lf", &Residue[i].xa, &Residue[i].ya, &Residue[i].za);
sscanf(Buffer, "ATOM%*13c%s", Residue[i].NameOfResidue);
switch(Atom) {
case 'C':
A = AC;
W = WC;
break;
case 'N':
A = AN;
W = WN;
break;
case 'O':
A = AO;
W = WO;
break;
case 'S':
A = AS;
W = WS;
break;
case 'H':
A = AH;
W = WH;
break;
case 'P':
A = AP;
W = WP;
break;
default:
A = 0.0;
W = 0.0;
}
Weight += W;
Aweight += A;
X += W * x;
Y += W * y;
Z += W * z;
XA += A * x;
YA += A * y;
ZA += A * z;
}
fclose(PDBFile);
}
%}
DECLARE
%{
// Declarations
double Absorption;
double NumberDensity;
// Protein properties
double complex **Matrix;
int NumberOfResidues;
ProteinStruct Protein;
%}
INITIALIZE
%{
// Rescale concentration into number of aggregates per m^3 times 10^-4
NumberDensity = Concentration * 6.02214129e19;
// Standard sample handling
if (!xwidth || !yheight || !zdepth) {
printf("%s: Sample has no volume - check parameters...! \n", NAME_CURRENT_COMP);
}
Absorption = AbsorptionCrosssection;
printf("Initializing protein structure...\n");
NumberOfResidues = CountResidues(PDBFilepath);
InitializeProtein(&Protein, NumberOfResidues);
int i;
Matrix = (double complex **) calloc(OrderOfHarmonics+1,sizeof(double complex *));
for (i = 0; i <= OrderOfHarmonics; ++i) {
Matrix[i] = (double complex *) calloc(OrderOfHarmonics+1,sizeof(double complex));
}
printf("Creating protein structure...\n");
ReadAminoPDB(PDBFilepath, &Protein);
printf("Initializations complete...\n");
%}
TRACE
%{
// Declarations
double t0;
double t1;
double l_full;
double l;
double l1;
double q;
double Intensity;
double Weight;
double IntensityPart;
double SolidAngle;
double qx;
double qy;
double qz;
double v;
double dt;
double vx_i;
double vy_i;
double vz_i;
char Intersect = 0;
double Slope;
double Offset;
int i;
// Computation
Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
if (Intersect) {
if (t0 < 0.0) {
fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
ABSORB;
}
// Compute properties of neutron
v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
l_full = v * (t1 - t0);
dt = rand01() * (t1 - t0) + t0;
PROP_DT(dt);
l = v * (dt - t0);
// Store properties of incoming neutron
vx_i = vx;
vy_i = vy;
vz_i = vz;
// Generate new direction of neutron
randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
// Compute q
qx = V2K * (vx_i - vx);
qy = V2K * (vy_i - vy);
qz = V2K * (vz_i - vz);
q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));
// Compute scattering for a given q-value
ResetMatrix(Matrix, OrderOfHarmonics);
for (i = 0; i < NumberOfResidues; ++i) {
ExpandStructure(Matrix, &Protein, i, q, RhoSolvent);
}
Intensity = ComputeIntensity(Matrix);
// Compute new weight
l1 = v * t1;
p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1) / v);
SCATTER;
}
%}
MCDISPLAY
%{
box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}
END
|