1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SANS_Guinier
*
* %I
* Written by: Henrich Frielinghaus
* Date: Sept 2004
* Origin: FZ-Juelich/FRJ-2/IFF/KWS-2
*
* Sample for Small Angle Neutron Scattering: Guinier model
*
* %D
* Sample that scatters with a Guinier shape. This is just an example where analytically
* an integral exists. The neutron paths are proportional to the intensity
* (low intensity > few paths).
*
* Guinier function (Rg)
* a = Rg*Rg/3
* propability_unscaled = q * exp(-a*q*q)
* integral_prop_unscal = 1/(2*a) * (1 - exp(-a*q*q))
* propability_scaled = 2*a * q*exp(-a*q*q) / (1 - exp(-a*q*q))
* integral_prop_scaled = (1 - exp(-a*q*q)) / (1 - exp(-a*qmax*qmax))
*
* In this simulation method many paths occur for high propability.
* For simulation of low intensities see SANS_AnySamp.
*
* Sample components leave the units of flux for the probability
* of the individual paths. That is more consitent than the
* Sans_spheres routine. Furthermore one can simulate the
* transmitted beam. This allows to determine the needed size of
* the beam stop. Only absorption has not been included yet to
* these sample-components. But thats really nothing.
*
* Example: SANS_Guinier(transm=0.5, Rg=100, qmax=0.03, xwidth=0.01, yheight=0.01, zdepth=0.001)
*
* %P
*
* INPUT PARAMETERS
*
* transm: [1] (coherent) transmission of sample for the optical path "zdepth"
* Rg: [Angs] Radius of Gyration
* qmax: [AA-1] Maximum scattering vector
* xwidth: [m] horiz. dimension of sample, as a width
* yheight: [m] vert.. dimension of sample, as a height
* zdepth: [m] thickness of sample
*
* %Link
* Sans_spheres component
*
* %E
*******************************************************************************/
DEFINE COMPONENT SANS_Guinier
SETTING PARAMETERS (transm=0.5, Rg=100, qmax=0.03, xwidth=0.01, yheight=0.01, zdepth=0.001)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
%}
INITIALIZE
%{
if (!xwidth || !yheight || !zdepth) {
exit(fprintf(stderr,"SANS_Guinier: %s: sample has no volume (zero dimensions)\n", NAME_CURRENT_COMP));
}
%}
TRACE
%{
double a,qm,q,q_v;
double transmr, t0, t1, v, l_full, l, dt, d_phi, theta;
double axis_x, axis_y, axis_z;
double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
char intersect=0;
transmr = transm; /* real transmission */
if (transmr<1e-10) transmr = 1e-10;
if (transmr>1e0 ) transmr = 1e0;
intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
if(intersect)
{
if(t0 < 0) ABSORB; /* Neutron enters at t=t0. */
v = sqrt(vx*vx + vy*vy + vz*vz);
l_full = v * (t1 - t0); /* Length of full path through sample */
transmr = exp(log(transmr)*l_full/zdepth); /* real transmission */
dt = rand01()*(t1 - t0) + t0; /* Time of scattering */
PROP_DT(dt); /* Point of scattering */
l = v*dt; /* Penetration in sample */
a = Rg*Rg/3.0;
qm= qmax;
if (qm<1.0/Rg) qm = 1.0/Rg;
if (qm>sqrt(log(1e6)/a)) qm = sqrt(log(1e6)/a);
q = sqrt(-log(1.0-rand01()*(1.0-exp(-a*qm*qm)))/a);
q_v = q*K2V; /* scattering possible ??? */
arg = q_v/(2.0*v);
if(arg<1.0 && rand01()>transmr)
{
theta = asin(arg); /* Bragg scattering law */
d_phi = 2*PI*rand01();
vec_prod(axis_x, axis_y, axis_z, vx, vy, vz, 0, 1, 0);
rotate(tmp_vx, tmp_vy, tmp_vz, vx, vy, vz, 2*theta, axis_x, axis_y, axis_z);
rotate(vout_x, vout_y, vout_z, tmp_vx, tmp_vy, tmp_vz, d_phi, vx, vy, vz);
vx = vout_x;
vy = vout_y;
vz = vout_z;
if(!box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth)) fprintf(stderr, "SANS_Guinier: FATAL ERROR: Did not hit box from inside.\n");
}
SCATTER;
}
%}
MCDISPLAY
%{
double radius = 0;
double h = 0;
{
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
%}
END
|