1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Single_crystal_inelastic
*
* %I
* Written by: Duc Le
* Date: August 2020
* Origin: STFC
*
* An extension of Single crystal with material dispersion
*
* %D
* The component handles a 4D S(q,w) material dispersion, and scatters neutrons
* out of it. It is based on the Isotropic_Sqw methodology, extended to 4D.
*
* A number of approximations are applied:
*
* - geometry is restricted to box, cylinder and sphere
* - ignore absorption, multiple scattering and incoherent scattering
* - no temperature handling. The temperature must be taken into account when
* generating the S(q,w) data sets, which should contain Bose/detailed balance.
* - intensity is used as provided by the S(q,w) data set
*
* We recommend that you first try the Test_Single_crystal_inelastic example to
* learn how to use this complex component.
*
* 4D S(q,w) data files
* --------------------
*
* The input data file derives from other McStas formats. It may contain structural
* information as in Lau/Laz files, and a list of S(q,w) [one per row] with 5 columns
**
** [ H K L E S(q,w) ]
**
* An example file example.sqw4 is provided in the McStas/Data directory.
*
* You may generate such files using <a href="http://ifit.mccode.org">iFit </a> such as:
*
* s = sqw_vaks('defaults'); % a 4D model
* d = iData(s); % use default coarse grid for axes [-0.5:0.5]
* saveas(d, 'sx_coh.sqw4', 'mcstas'); % export to 4D Sqw file
*
* %VALIDATION:
* This component is undergoing validation.
*
* %P
* INPUT PARAMETERS:
* radius: [m] Outer radius of sample in (x,z) plane.
* xwidth: [m] Width of crystal.
* yheight: [m] Height of crystal.
* zdepth: [m] Depth of crystal (no extinction simulated)
* sqw: [string] Name of a 4d S(q,w) file - example.sqw4 is included in your installation
* geometry: [string] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust.
* delta_d_d: [1] Lattice spacing variance, gaussian RMS.
* mosaic: [arcmin] Isotropic crystal mosaic, gaussian RMS. Puts the crystal in the isotropic mosaic model state, thus disregarding other mosaicity parameters.
* mosaic_a: [arcmin] Horizontal (rotation around lattice vector a) mosaic (anisotropic), gaussian RMS. Put the crystal in the anisotropic crystal vector state. I.e. model mosaicity through rotation around the crystal lattice vectors. Has precedence over in-plane mosaic model.
* mosaic_b: [arcmin] Vertical (rotation around lattice vector b) mosaic (anisotropic), gaussian RMS.
* mosaic_c: [arcmin] Out-of-plane (Rotation around lattice vector c) mosaic (anisotropic), gaussian RMS.
* mosaic_AB: [arcmin,arcmin,1,1,1,1,1,1] In Plane mosaic rotation and plane vectors (anisotropic),
* mosaic_A, mosaic_B, A_h,A_k,A_l, B_h,B_k,B_l. Puts the crystal in
* the in-plane mosaic state. Vectors A and B define plane in which
* the crystal roation is defined, and mosaic_A, mosaic_B, denotes the
* resp. mosaicities (gaussian RMS) with respect to the the two
* reflections chosen by A and B (Miller indices).
* recip_cell: [1] Choice of direct/reciprocal (0/1) unit cell definition.
* ax: [AA / AA^-1] Coordinates of first (direct/recip) unit cell vector.
* ay: [AA / AA^-1] a on y axis
* az: [AA / AA^-1] a on z axis
* bx: [AA / AA^-1] Coordinates of second (direct/recip) unit cell vector.
* by: [AA / AA^-1] b on y axis
* bz: [AA / AA^-1] b on z axis
* cx: [AA / AA^-1] Coordinates of third (direct/recip) unit cell vector.
* cy: [AA / AA^-1] c on y axis
* cz: [AA / AA^-1] c on z axis
* reflections: [string] File name containing structure factors of reflections. Use
* empty ("") or NULL for incoherent scattering only.
* order: [1] Limit multiple scattering up to given order
* (0: all, 1: first, 2: second, ...).
*
* Optional input parameters:
*
* p_transmit: [1] Monte Carlo probability for neutrons to be transmitted
* without any scattering. Used to improve statistics from
* weak reflections.
* sigma_abs: [barns] Absorption cross-section per unit cell at 2200 m/s.
* sigma_inc: [barns] Incoherent scattering cross-section per unit cell.
* aa: [deg] Unit cell angles alpha, beta and gamma. Then uses norms of
* vectors a,b and c as lattice parameters.
* bb: [deg] Beta angle.
* cc: [deg] Gamma angle.
* barns: [1] Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2.
* barns=1 for laz and isotropic constant elastic scattering (reflections=NULL),
* barns=0 for lau type files.
* RX: [m] Radius of horizontal along X lattice curvature. flat for 0.
* RY: [m] Radius of vertical lattice curvature. flat for 0.
* RZ: [m] Radius of horizontal along Z lattice curvature. flat for 0.
* %E
****************************************************************************/
DEFINE COMPONENT Single_crystal_inelastic
SETTING PARAMETERS(vector mosaic_AB={0,0, 0,0,0, 0,0,0}, string sqw=0, string geometry=0, qwidth=0.05,
xwidth=0, yheight=0, zdepth=0, radius=0, delta_d_d=1e-4,
mosaic=-1, mosaic_a=-1, mosaic_b=-1, mosaic_c=-1,
recip_cell=0, barns=0,
ax=0, ay=0, az=0,
bx=0, by=0, bz=0,
cx=0, cy=0, cz=0,
p_transmit=-1, sigma_abs=0, sigma_inc=0,
aa=0, bb=0, cc=0, order=0, RX=0, RY=0, RZ=0,
max_stored_ki=1000, max_bad=10000)
NOACC
SHARE
%{
/* used for reading data table from file */
%include "read_table-lib"
%include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef SINGLE_CRYSTAL_DECL
#define SINGLE_CRYSTAL_DECL
struct hkl_data
{
double h,k,l,en; /* Indices for this reflection */
double SQW; /* Value of scattering function */
double qx, qy, qz; /* Coordinates in Cartesian reciprocal space */
double qmod; /* Length of (qx, qy, qz) */
double chki; /* |Q|+(2m/hbar^2)*E/|Q| - should be less than 2ki to satisfy conservation */
};
struct hkl_store
{
double kx,ky,kz; /* Momentum direction (in crystal) for this ki */
int *hkl; /* Indices into hkl_data *list */
double *CDF; /* Cumulative distribution function */
int nhkl; /* Number of hkl,en points accessible from this ki */
};
struct hkl_info_struct
{
struct hkl_data *list; /* Reflection array */
int count; /* Number of reflections */
double m_delta_d_d; /* Delta-d/d FWHM */
double m_ax,m_ay,m_az; /* First unit cell axis (direct space, AA) */
double m_bx,m_by,m_bz; /* Second unit cell axis */
double m_cx,m_cy,m_cz; /* Third unit cell axis */
double asx,asy,asz; /* First reciprocal lattice axis (1/AA) */
double bsx,bsy,bsz; /* Second reciprocal lattice axis */
double csx,csy,csz; /* Third reciprocal lattice axis */
double aix,aiy,aiz; /* First reciprocal lattice axis (1/AA) */
double bix,biy,biz; /* Second reciprocal lattice axis */
double cix,ciy,ciz; /* Third reciprocal lattice axis */
double m_a, m_b, m_c; /* length of lattice parameter lengths */
double m_aa, m_bb, m_cc; /* lattice angles */
double sigma_a, sigma_i; /* abs and inc X sect */
double rho; /* density */
double at_weight; /* atomic weight */
double at_nb; /* nb of atoms in a cell */
double V0; /* Unit cell volume (AA**3) */
int column_order[5]; /* column signification [h,k,l,F,F2] */
int recip; /* Flag to indicate if recip or direct cell axes given */
int shape; /* 0:cylinder, 1:box, 2:sphere 3:any shape*/
int flag_warning; /* number of warnings */
char type; /* type of last event: t=transmit,c=coherent or i=incoherent */
int h,k,l; /* last coherent scattering momentum transfer indices */
int is_sorted; /* S(Q,w) is sorted first by en, then by |Q| in that order */
double *SwCDF; /* Cumulative dist. func. of S(|Q|) for inv. transform sampling */
int nSw; /* Number of points in CDF */
int **SwQi;
int *nQ; /* Number of q-points at each energy */
double *SqwCDF; /* Cumulative dist. func. of S(E) at particular values of |Q| */
int *iSqwCDF; /* Index into CDF of S(E) */
int maxecount; /* Maximum number of E-slice for each |Q| */
struct hkl_store *stored; /* Stored list of allowed hkl for particular ki vector */
int stored_ki_max; /* Maximum number of saved hkl/ki to store */
int last_stored; /* Index of the last hkl/ki list computed */
double *badx,*bady,*badz; /* kx,ky,kz of bad ki which cannot satisfy any E(hkl) */
int nbad; /* Number of bad ki's found */
int nextbad;
int maxbad;
};
/* Quicksort modified from public domain implementation by Darel Rex Finley.
http://alienryderflex.com/quicksort/ */
void
quickSort(int *id, double *val, int elements)
{
#define MAX_LEVELS 300
double piv, lval, rval;
int beg[MAX_LEVELS], end[MAX_LEVELS], i=0, L, R, C, swap;
beg[0]=0; end[0]=elements;
while (i>=0) {
L=beg[i]; R=end[i]-1;
if (L<R)
{
piv=val[id[L]]; C=id[L];
while (L<R)
{
while (val[id[R]]>=piv && L<R) R--; if (L<R) id[L++]=id[R];
while (val[id[L]]<=piv && L<R) L++; if (L<R) id[R--]=id[L];
}
id[L]=C; beg[i+1]=L+1; end[i+1]=end[i]; end[i++]=L;
if (end[i]-beg[i]>end[i-1]-beg[i-1])
{
swap=beg[i]; beg[i]=beg[i-1]; beg[i-1]=swap;
swap=end[i]; end[i]=end[i-1]; end[i-1]=swap;
}
}
else i--;
}
}
int
read_hkl_data(char *SC_file, struct hkl_info_struct *info,
double SC_mosaic, double SC_mosaic_a, double SC_mosaic_b, double SC_mosaic_c, double *SC_mosaic_AB, double qwidth)
{
struct hkl_data *list = NULL;
int size = 0;
t_Table sTable; /* sample data table structure from SC_file */
int i=0;
double tmp_x, tmp_y, tmp_z;
char **parsing;
char flag=0;
double nb_atoms=1;
info->is_sorted = 0;
FILE *index;
if (!SC_file || !strlen(SC_file) || !strcmp(SC_file,"NULL") || !strcmp(SC_file,"0")) {
info->count = 0;
flag=1;
}
if (!flag) {
Table_Read(&sTable, SC_file, 1); /* read 1st block data from SC_file into sTable*/
if (sTable.columns < 5) {
fprintf(stderr, "Single_crystal_inelastic: Error: The number of columns in %s should be at least %d for [h,k,l,en,S]\n", SC_file, 4);
return(0);
}
if (!sTable.rows) {
fprintf(stderr, "Single_crystal_inelastic: Error: The number of rows in %s should be at least %d\n", SC_file, 1);
return(0);
} else size = sTable.rows;
/* parsing of header */
parsing = Table_ParseHeader(sTable.header,
"sigma_abs","sigma_a ",
"sigma_inc","sigma_i ",
"column_h",
"column_k",
"column_l",
"column_E ",
"column_S ",
"Delta_d/d",
"lattice_a ",
"lattice_b ",
"lattice_c ",
"lattice_aa",
"lattice_bb",
"lattice_cc",
"nb_atoms",
"sorted",
NULL);
if (parsing) {
if (parsing[0] && !info->sigma_a) info->sigma_a=atof(parsing[0]);
if (parsing[1] && !info->sigma_a) info->sigma_a=atof(parsing[1]);
if (parsing[2] && !info->sigma_i) info->sigma_i=atof(parsing[2]);
if (parsing[3] && !info->sigma_i) info->sigma_i=atof(parsing[3]);
if (parsing[4]) info->column_order[0]=atoi(parsing[4]);
if (parsing[5]) info->column_order[1]=atoi(parsing[5]);
if (parsing[6]) info->column_order[2]=atoi(parsing[6]);
if (parsing[7]) info->column_order[3]=atoi(parsing[7]);
if (parsing[8]) info->column_order[4]=atoi(parsing[8]);
if (parsing[9] && info->m_delta_d_d <0) info->m_delta_d_d=atof(parsing[9]);
if (parsing[10] && !info->m_a) info->m_a =atof(parsing[10]);
if (parsing[11] && !info->m_b) info->m_b =atof(parsing[11]);
if (parsing[12] && !info->m_c) info->m_c =atof(parsing[12]);
if (parsing[13] && !info->m_aa) info->m_aa=atof(parsing[13]);
if (parsing[14] && !info->m_bb) info->m_bb=atof(parsing[14]);
if (parsing[15] && !info->m_cc) info->m_cc=atof(parsing[15]);
if (parsing[16]) nb_atoms=atof(parsing[16]);
if (parsing[17]) info->is_sorted=1;
for (i=0; i<=17; i++) if (parsing[i]) free(parsing[i]);
free(parsing);
}
}
if (nb_atoms > 1) { info->sigma_a *= nb_atoms; info->sigma_i *= nb_atoms; }
/* special cases for the structure definition */
if (info->m_ax || info->m_ay || info->m_az) info->m_a=0; /* means we specify by hand the vectors */
if (info->m_bx || info->m_by || info->m_bz) info->m_b=0;
if (info->m_cx || info->m_cy || info->m_cz) info->m_c=0;
/* compute the norm from vector a if missing */
if (info->m_ax || info->m_ay || info->m_az) {
double as=sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
if (!info->m_bx && !info->m_by && !info->m_bz) info->m_a=info->m_b=as;
if (!info->m_cx && !info->m_cy && !info->m_cz) info->m_a=info->m_c=as;
}
if (info->m_a && !info->m_b) info->m_b=info->m_a;
if (info->m_b && !info->m_c) info->m_c=info->m_b;
/* compute the lattive angles if not set from data file. Not used when in vector mode. */
if (info->m_a && !info->m_aa) info->m_aa=90;
if (info->m_aa && !info->m_bb) info->m_bb=info->m_aa;
if (info->m_bb && !info->m_cc) info->m_cc=info->m_bb;
/* parameters consistency checks */
if (!info->m_ax && !info->m_ay && !info->m_az && !info->m_a) {
fprintf(stderr,
"Single_crystal_inelastic: Error:Wrong a lattice vector definition\n");
return(0);
}
if (!info->m_bx && !info->m_by && !info->m_bz && !info->m_b) {
fprintf(stderr,
"Single_crystal_inelastic: Error:Wrong b lattice vector definition\n");
return(0);
}
if (!info->m_cx && !info->m_cy && !info->m_cz && !info->m_c) {
fprintf(stderr,
"Single_crystal_inelastic: Error:Wrong c lattice vector definition\n");
return(0);
}
if (info->m_aa && info->m_bb && info->m_cc && info->recip) {
fprintf(stderr,
"Single_crystal_inelastic: Error: Selecting reciprocal cell and angles is unmeaningful\n");
return(0);
}
if (info->m_aa && info->m_bb && info->m_cc)
{
double as,bs,cs;
if (info->m_a) as = info->m_a;
else as = sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
if (info->m_b) bs = info->m_b;
else bs = sqrt(info->m_bx*info->m_bx+info->m_by*info->m_by+info->m_bz*info->m_bz);
if (info->m_c) cs = info->m_c;
else cs = sqrt(info->m_cx*info->m_cx+info->m_cy*info->m_cy+info->m_cz*info->m_cz);
// Single crystal definition of B-matrix with z||b, x||cross(a,b), y||cross(x,z) [real-space]
// [ 0, 0, sqrt( c*c*( 1-cos(beta)-[(cos(a)-cos(g)*cos(b))/sin(g)]**2 ) ]
// [ b*sin(gamma), 0, c*(cos(alpha)-cos(gamma)*cos(beta))/sin(gamma) ]
// [ b*cos(gamma), a, c*cos(beta) ]
info->m_bz = as; info->m_by = 0; info->m_bx = 0;
info->m_az = bs*cos(info->m_cc*DEG2RAD);
info->m_ay = bs*sin(info->m_cc*DEG2RAD);
info->m_ax = 0;
info->m_cz = cs*cos(info->m_bb*DEG2RAD);
info->m_cy = cs*(cos(info->m_aa*DEG2RAD)-cos(info->m_cc*DEG2RAD)*cos(info->m_bb*DEG2RAD))
/sin(info->m_cc*DEG2RAD);
info->m_cx = sqrt(cs*cs - info->m_cz*info->m_cz - info->m_cy*info->m_cy);
/*
// Matlab definition of b-matrix with x||a*, z||cross(a*,b*), y||cross(x,z) [reciprocal space]
double ca = cos(info->m_aa*DEG2RAD), cb = cos(info->m_bb*DEG2RAD), cc = cos(info->m_cc*DEG2RAD);
double sa = sin(info->m_aa*DEG2RAD), sb = sin(info->m_bb*DEG2RAD), sc = sin(info->m_cc*DEG2RAD);
double v = 1-ca*ca-cb*cb-cc*cc+2*ca*cb*cc;
if(v<0) { fprintf(stderr,"Unit cell parameters: alpha=%f,beta=%f,gamma=%f are not geometrically consistent.\n",info->m_aa,info->m_bb,info->m_cc); exit(-1); }
v = sqrt(v);
double ar = (2*PI/v)*(fabs(sa))/as, br = (2*PI/v)*(fabs(sb))/bs, cr = (2*PI/v)*(fabs(sc))/cs;
double r_aa = acos( (cb*cc-ca)/fabs(sb*sc) ), r_bb = acos( (cc*ca-cb)/fabs(sc*sa) ), r_cc = acos( (ca*cb-cc)/fabs(sa*sb) );
info->m_ax = ar; info->m_bx = br*cos(r_cc); info->m_cx = cr*cos(r_bb);
info->m_ay = 0.; info->m_by = bs*sin(r_cc); info->m_cy = -cr*fabs(sin(r_bb))*cos(r_aa);
info->m_az = 0.; info->m_bz = 0.; info->m_cz = 2*PI/cs;
info->recip = 1;
*/
printf("B-matrix = \n\t\t % 8.5g,% 8.5g,% 8.5g\n\t\t % 8.5g,% 8.5g,% 8.5g\n\t\t % 8.5g,% 8.5g,% 8.5g\n",
info->m_ax,info->m_bx,info->m_cx,info->m_ay,info->m_by,info->m_cy,info->m_az,info->m_bz,info->m_cz);
printf("Single_crystal_inelastic: %s structure a=%g b=%g c=%g aa=%g bb=%g cc=%g ",
(flag ? "INC" : SC_file), as, bs, cs, info->m_aa, info->m_bb, info->m_cc);
} else {
if (!info->recip) {
printf("Single_crystal_inelastic: %s structure a=[%g,%g,%g] b=[%g,%g,%g] c=[%g,%g,%g] ",
(flag ? "INC" : SC_file), info->m_ax ,info->m_ay ,info->m_az,
info->m_bx ,info->m_by ,info->m_bz,
info->m_cx ,info->m_cy ,info->m_cz);
} else {
printf("Single_crystal_inelastic: %s structure a*=[%g,%g,%g] b*=[%g,%g,%g] c*=[%g,%g,%g] ",
(flag ? "INC" : SC_file), info->m_ax ,info->m_ay ,info->m_az,
info->m_bx ,info->m_by ,info->m_bz,
info->m_cx ,info->m_cy ,info->m_cz);
}
}
/* Compute reciprocal or direct lattice vectors. */
if (!info->recip) {
vec_prod(tmp_x, tmp_y, tmp_z,
info->m_bx, info->m_by, info->m_bz,
info->m_cx, info->m_cy, info->m_cz);
info->V0 = fabs(scalar_prod(info->m_ax, info->m_ay, info->m_az, tmp_x, tmp_y, tmp_z));
printf("rV0=%g\n", info->V0);
info->asx = 2*PI/info->V0*tmp_x;
info->asy = 2*PI/info->V0*tmp_y;
info->asz = 2*PI/info->V0*tmp_z;
vec_prod(tmp_x, tmp_y, tmp_z, info->m_cx, info->m_cy, info->m_cz, info->m_ax, info->m_ay, info->m_az);
info->bsx = 2*PI/info->V0*tmp_x;
info->bsy = 2*PI/info->V0*tmp_y;
info->bsz = 2*PI/info->V0*tmp_z;
vec_prod(tmp_x, tmp_y, tmp_z, info->m_ax, info->m_ay, info->m_az, info->m_bx, info->m_by, info->m_bz);
info->csx = 2*PI/info->V0*tmp_x;
info->csy = 2*PI/info->V0*tmp_y;
info->csz = 2*PI/info->V0*tmp_z;
} else {
info->asx = info->m_ax;
info->asy = info->m_ay;
info->asz = info->m_az;
info->bsx = info->m_bx;
info->bsy = info->m_by;
info->bsz = info->m_bz;
info->csx = info->m_cx;
info->csy = info->m_cy;
info->csz = info->m_cz;
vec_prod(tmp_x, tmp_y, tmp_z,
info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI),
info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI));
info->V0 = 1/fabs(scalar_prod(info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI), tmp_x, tmp_y, tmp_z));
printf("V0=%g\n", info->V0);
/*compute the direct cell parameters, ofr completeness*/
info->m_ax = tmp_x*info->V0;
info->m_ay = tmp_y*info->V0;
info->m_az = tmp_z*info->V0;
vec_prod(tmp_x, tmp_y, tmp_z,info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI),info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI));
info->m_bx = tmp_x*info->V0;
info->m_by = tmp_y*info->V0;
info->m_bz = tmp_z*info->V0;
vec_prod(tmp_x, tmp_y, tmp_z,info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI),info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI));
info->m_cx = tmp_x*info->V0;
info->m_cy = tmp_y*info->V0;
info->m_cz = tmp_z*info->V0;
}
if (flag) return(-1);
if (!info->column_order[0] || !info->column_order[1] || !info->column_order[2] || !info->column_order[3]) {
fprintf(stderr,
"Single_crystal_inelastic: Error:Wrong h,k,l,E column definition\n");
return(0);
}
if (!info->column_order[4]) {
fprintf(stderr,
"Single_crystal_inelastic: Error:Wrong S(q,w) column definition\n");
return(0);
}
/* allocate hkl_data array */
list = (struct hkl_data*)malloc(size*sizeof(struct hkl_data));
/* Sorts the table, if not sorted by |Q| and energy */
int *id = (int*)malloc(size*sizeof(int));
double en, Qx, Qy, Qz, Qm, *vl;
vl = (double*)malloc(size*sizeof(double));
double h, k, l, Emax=0, Qmax=0, Emul, Qmul;
for (i=0; i<size; i++)
{
h = Table_Index(sTable, i, info->column_order[0]-1);
k = Table_Index(sTable, i, info->column_order[1]-1);
l = Table_Index(sTable, i, info->column_order[2]-1);
Qx = h*info->asx + k*info->bsx + l*info->csx;
Qy = h*info->asy + k*info->bsy + l*info->csy;
Qz = h*info->asz + k*info->bsz + l*info->csz;
Qm = sqrt(Qx*Qx+Qy*Qy+Qz*Qz);
en = Table_Index(sTable, i, info->column_order[3]-1);
id[i] = i; if(Qm>Qmax) Qmax=Qm; if(en>Emax) Emax=en;
list[i].h = h;
list[i].k = k;
list[i].l = l;
list[i].qx = Qx;
list[i].qy = Qy;
list[i].qz = Qz;
list[i].en = en;
list[i].SQW = Table_Index(sTable, i, info->column_order[4]-1);
list[i].qmod = Qm;
list[i].chki = (Qm + 0.4825966246*en/Qm)/2.; // |Q|+(2m/hbar^2)*E/|Q| <= 2|ki| to satisfy conservation.
if(i>0 && list[i].chki<list[i-1].chki) info->is_sorted = 0;
}
if(!info->is_sorted)
{
printf("Sorting\n");
// Sorts by |Q|+(2m/hbar^2)*E/|Q| - if 2*|ki| > first entry, that neutron cannot scatter from the sample
for (i=0; i<size; i++) vl[i] = list[i].chki;
quickSort(id, vl, size);
printf("Sorted\n");
}
free(vl);
FILE *tf;
tf=fopen("sorted.out","w");
for(i=0; i<size; i++) fprintf(tf,"%d\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",i,list[id[i]].chki,list[id[i]].qmod,list[id[i]].h,list[id[i]].k,list[id[i]].l,list[id[i]].en,list[id[i]].SQW);
fclose(tf);
// Re-order the list of S(q,w) points by |Q|+(2m/hbar^2)*E/|Q|, and then by |Q| where these are degenerate
int isw=0, **SwQi, *SwQt, *nQ; double *Sw, hh, kk, ll, qx, qy, qz; //*CQ, **SqwCDF, **SwQ2; int iswQ=0,
Sw=(double*)malloc(size*sizeof(double));
// Allocates an array of pointers to indices of all the Q's corresponding to a particular |Q|+(2m/hbar^2)*E/|Q|
SwQi=(int**)malloc(size*sizeof(int*));
SwQt = (int*)malloc(size*sizeof(int));
nQ = (int*)malloc(size*sizeof(int));
int ecount=0, maxecount=0;
double oldQ=0;
for(i=0; i<size; i++) Sw[i]=0.;
for (i=0; i<(size-1); i++)
{
int ii = info->is_sorted ? i : id[i]; int iip = info->is_sorted ? i+1 : id[i+1];
if(list[ii].SQW==0) continue;
Sw[isw] += list[ii].SQW;
SwQt[ecount++] = ii;
if(fabs(list[iip].chki-oldQ)>1e-8 || i==(size-1))
{
int ii2;
SwQi[isw] = (int*)malloc(ecount*sizeof(int));
nQ[isw] = ecount;
for(ii2=0; ii2<ecount; ii2++)
{
SwQi[isw][ii2]=SwQt[ii2];
}
oldQ = list[iip].chki;
isw++;
if(ecount>maxecount) maxecount=ecount;
ecount=0;
}
}
printf("\n");
double *SwCDF = (double*)malloc(isw*sizeof(double));
SwCDF[0] = Sw[0]; for (i=1; i<isw; i++) { SwCDF[i] = SwCDF[i-1]+Sw[i]; }
info->SwCDF = SwCDF;
info->nSw = isw;
FILE *cdf = fopen("mcdisp_sqw.cdf","w");
int j;
for (i=0; i<isw; i++) { fprintf(cdf,"%f %f\n",list[SwQi[i][0]].chki,SwCDF[i]); for(j=0; j<nQ[i]; j++) fprintf(cdf,"\t%f (%f %f %f, %f) %f\n",
list[SwQi[i][j]].qmod,list[SwQi[i][j]].h,list[SwQi[i][j]].k,list[SwQi[i][j]].l,list[SwQi[i][j]].en,list[SwQi[i][j]].SQW); }
fclose(cdf);
info->SwQi = SwQi;
info->nQ = nQ;
double *SqwCDF; SqwCDF = (double*)malloc(maxecount*sizeof(double)); info->SqwCDF = SqwCDF;
int *iSqwCDF; iSqwCDF= (int*)malloc(maxecount*sizeof(int)); info->iSqwCDF = iSqwCDF;
info->maxecount = maxecount;
Table_Free(&sTable);
free(id);
info->list = list;
double a11,a12,a13,a21,a22,a23,a31,a32,a33;
a11 = info->asx; a12 = info->bsx; a13 = info->csx;
a21 = info->asy; a22 = info->bsy; a23 = info->csy;
a31 = info->asz; a32 = info->bsz; a33 = info->csz;
double deta = a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31;
if(deta==0.) { printf("bad deta\n"); exit(-1); }
info->aix = (a22*a33-a23*a32)/deta; info->bix = (a13*a32-a12*a33)/deta; info->cix = (a12*a23-a13*a22)/deta;
info->aiy = (a23*a31-a21*a33)/deta; info->biy = (a11*a33-a13*a31)/deta; info->ciy = (a13*a21-a11*a23)/deta;
info->aiz = (a21*a32-a22*a31)/deta; info->biz = (a12*a31-a11*a32)/deta; info->ciz = (a11*a22-a12*a21)/deta;
return(info->count = size);
} /* read_hkl_data */
#endif /* !SINGLE_CRYSTAL_DECL */
%}
DECLARE
%{
struct hkl_info_struct hkl_info;
off_struct offdata;
FILE *hist;
%}
INITIALIZE
%{
hist = fopen("energies.hist","w");
double as, bs, cs;
/* transfer input parameters */
hkl_info.m_delta_d_d = delta_d_d;
hkl_info.m_a = 0;
hkl_info.m_b = 0;
hkl_info.m_c = 0;
hkl_info.m_aa = aa;
hkl_info.m_bb = bb;
hkl_info.m_cc = cc;
hkl_info.m_ax = ax;
hkl_info.m_ay = ay;
hkl_info.m_az = az;
hkl_info.m_bx = bx;
hkl_info.m_by = by;
hkl_info.m_bz = bz;
hkl_info.m_cx = cx;
hkl_info.m_cy = cy;
hkl_info.m_cz = cz;
hkl_info.sigma_a = sigma_abs;
hkl_info.sigma_i = sigma_inc;
hkl_info.recip = recip_cell;
/* default format h,k,l,en,S */
hkl_info.column_order[0]=1;
hkl_info.column_order[1]=2;
hkl_info.column_order[2]=3;
hkl_info.column_order[3]=4;
hkl_info.column_order[4]=5;
/*this is necessary to allow a numerical array to be passed through as a DEFINITION parameter*/
double* mosaic_ABin=mosaic_AB;
/* Read in structure factors, and do some pre-calculations. */
if (!read_hkl_data(sqw, &hkl_info, mosaic, mosaic_a, mosaic_b, mosaic_c, mosaic_ABin, qwidth))
exit(-1);
if (hkl_info.sigma_a<0) hkl_info.sigma_a=0;
if (hkl_info.sigma_i<0) hkl_info.sigma_i=0;
if (hkl_info.count)
printf("Single_crystal_inelastic: %s: Read %d (Q,w) points from file '%s'\n",
NAME_CURRENT_COMP, hkl_info.count, sqw);
else printf("Single_crystal_inelastic: %s: Using incoherent elastic scattering with cross-section %f only.\n",
NAME_CURRENT_COMP, hkl_info.sigma_i);
hkl_info.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape */
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
hkl_info.shape=3;
}
}
else if (xwidth && yheight && zdepth) hkl_info.shape=1; /* box */
else if (radius > 0 && yheight) hkl_info.shape=0; /* cylinder */
else if (radius > 0 && !yheight) hkl_info.shape=2; /* sphere */
if (hkl_info.shape < 0)
exit(fprintf(stderr,"Single_crystal_inelastic: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
/* Allocates space for saved ki */
int i;
hkl_info.stored_ki_max = max_stored_ki;
hkl_info.stored = (struct hkl_store*)malloc(max_stored_ki*sizeof(struct hkl_store));
for(i=0; i<max_stored_ki; i++) {
hkl_info.stored[i].kx = 0.;
hkl_info.stored[i].ky = 0.;
hkl_info.stored[i].kz = 0.;
hkl_info.stored[i].nhkl = 0;
}
hkl_info.last_stored = 0;
/* Initialise bad ki_list */
hkl_info.maxbad = max_bad;
hkl_info.badx = (double*)malloc(max_bad*sizeof(double));
hkl_info.bady = (double*)malloc(max_bad*sizeof(double));
hkl_info.badz = (double*)malloc(max_bad*sizeof(double));
hkl_info.nbad = 0;
hkl_info.nextbad = 0;
printf("Single_crystal_inelastic: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] sqw=%s\n",
NAME_CURRENT_COMP, hkl_info.V0, hkl_info.sigma_a, hkl_info.sigma_i, sqw && strlen(sqw) ? sqw : "NULL");
%}
TRACE
%{
double t1, t2=0; /* Entry and exit times in sample */
struct hkl_data *L; /* Structure factor list */
int i, i1, i2, i3; /* Index into structure factor list */
int j; /* Index into reflection list */
int event_counter; /* scattering event counter */
double kix, kiy, kiz, ki; /* Initial wave vector [1/AA] */
double kfx, kfy, kfz; /* Final wave vector */
double v; /* Neutron velocity */
double tau_max; /* Max tau allowing reflection at this ki */
double tau_x, tau_y, tau_z;
double tau;
double rho_x, rho_y, rho_z; /* the vector ki - tau */
double rho;
double diff; /* Deviation from Bragg condition */
double ox, oy, oz; /* Origin of Ewald sphere tangent plane */
double b1x, b1y, b1z; /* First vector spanning tangent plane */
double b2x, b2y, b2z; /* Second vector spanning tangent plane */
double n11, n12, n22; /* 2D Gauss description matrix N */
double det_N; /* Determinant of N */
double inv_n11, inv_n12, inv_n22; /* Inverse of N */
double l11, l12, l22; /* Cholesky decomposition L of 1/2*inv(N) */
double det_L; /* Determinant of L */
double Bt_D_O_x, Bt_D_O_y; /* Temporaries */
double y0x, y0y; /* Center of 2D Gauss in plane coordinates */
double alpha; /* Offset of 2D Gauss center from 3D center */
int tau_count; /* Number of reflections within cutoff */
double V0; /* Volume of unit cell */
double l_full; /* Neutron path length for transmission */
double l; /* Path length to scattering event */
double abs_xsect, abs_xlen; /* Absorption cross section and length */
double inc_xsect, inc_xlen; /* Incoherent scattering cross section and length */
double coh_xsect, coh_xlen; /* Coherent cross section and length */
double tot_xsect, tot_xlen; /* Total cross section and length */
double z1, z2, y1, y2; /* Temporaries to choose kf from 2D Gauss */
double adjust, coh_refl; /* Temporaries */
double r, sum; /* Temporaries */
double xsect_factor; /* Common factor in coherent cross-section */
double p_trans; /* Transmission probability */
double mc_trans, mc_interact; /* Transmission, interaction MC choices */
int intersect=0;
double theta, phi; /* rotation angles for curved lattice option */
double u; /* Uniformly distributed random variable */
double en, kf, kf2, ki2; /* Energy transfer and final wavevector */
double qm0, qm1; /* Boundaries of bins for linear interpolation */
double q2, qmod; /* Momentum transfer squared and modulus */
double qminus, qplus, qdiff;
int istart,istop;
double eslope;
double tau_dmin;
int itau;
double p0=p; p=0;
/* Intersection neutron trajectory / sample (sample surface) */
if (hkl_info.shape == 0)
intersect = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius, yheight);
else if (hkl_info.shape == 1)
intersect = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
else if (hkl_info.shape == 2)
intersect = sphere_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius);
else if (hkl_info.shape == 3)
intersect = off_intersect(&t1, &t2, NULL, NULL, x, y, z, vx, vy, vz, 0, 0, 0, offdata );
if (t2 < 0) intersect=0; /* we passed sample volume already */
if(intersect)
{ /* Neutron intersects crystal */
if(t1 > 0)
PROP_DT(t1); /* Move to crystal surface if not inside */
v = sqrt(vx*vx + vy*vy + vz*vz);
ki = V2K*v;
event_counter = 0;
abs_xsect = hkl_info.sigma_a*2200/v;
inc_xsect = hkl_info.sigma_i;
V0= hkl_info.V0;
abs_xlen = abs_xsect/V0;
inc_xlen = inc_xsect/V0;
if (barns) {
/*If cross sections are given in barns, we need a scaling factor of 100
to get scattering lengths in m, since V0 is assumed to be in AA*/
abs_xlen *= 100; inc_xlen *= 100;
} /* else assume fm^2 */
L = hkl_info.list;
hkl_info.type = '\0';
do { // Loop over multiple scattering events //
if (hkl_info.shape == 0)
intersect = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius, yheight);
else if (hkl_info.shape == 1)
intersect = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
else if (hkl_info.shape == 2)
intersect = sphere_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius);
else if (hkl_info.shape == 3)
intersect = off_intersect(&t1, &t2, NULL, NULL, x, y, z, vx, vy, vz, 0, 0, 0, offdata );
if(!intersect || t2*v < -1e-9 || t1*v > 1e-9)
{
/* neutron is leaving the sample */
if (hkl_info.flag_warning < 100)
fprintf(stderr,
"Single_crystal_inelastic: %s: Warning: neutron has unexpectedly left the crystal!\n"
" t1=%g t2=%g x=%g y=%g z=%g vx=%g vy=%g vz=%g\n",
NAME_CURRENT_COMP, t1, t2, x, y, z, vx, vy, vz);
hkl_info.flag_warning++;
break;
}
l_full = t2*v;
/* (1). Compute incoming wave vector ki */
/* lattice curvature option: rotate neutron velocity */
if (RX || RY || RZ) {
if (RX) { rotate(b1x,b1y,b1z,vx,vy,vz, atan2(x,RX),0,0,1); }
else { b1x=vx; b1y=vy; b1z=vz; }
if (RY) { rotate(b2x,b2y,b2z,b1x,b1y,b1z, atan2(y,RY),1,0,0); }
else { b2x=b1x; b2y=b1y; b2z=b1z; }
if (RZ) { rotate(b1x,b1y,b1z,b2x,b2y,b2z, atan2(z,RZ),0,1,0); }
else { b1x=b2x; b1y=b2y; b1z=b2z; }
kix = V2K*b1x;
kiy = V2K*b1y;
kiz = V2K*b1z;
} else {
kix = V2K*vx;
kiy = V2K*vy;
kiz = V2K*vz;
}
ki2 = kix*kix + kiy*kiy + kiz*kiz;
if(hkl_info.list[hkl_info.SwQi[0][0]].chki > (2*ki)) { // No hkl point can satisfy kinematics for this ki.
ABSORB; // Should propagate it out of the crystal ...
break;
}
// Goes through the full S(q,w) list to find points which are kinematically accessible with this ki, then save this
// to an array which is then re-used for ki's similar to this one in future.
int klist = -1;
double kdir,kmag;
// Checks previously generated list of ki's which cannot scatter from the sample due to orientation.
for(i1=0; i1<hkl_info.nbad; i1++) {
kmag = sqrt(hkl_info.badx[i1]*hkl_info.badx[i1] + hkl_info.bady[i1]*hkl_info.bady[i1] + hkl_info.badz[i1]*hkl_info.badz[i1]);
kdir = (kix*hkl_info.badx[i1] + kiy*hkl_info.bady[i1] + kiz*hkl_info.badz[i1])/kmag/ki;
if(fabs(kdir-1)<1e-4 && fabs(kmag-ki)<0.01) {
ABSORB; // Should propagate it out of the crystal ...
break;
}
}
// Check previously generated list of ki's which can scatter, and see if this ki matchs, saving us to go through the S(q,w) list again.
for(i1=0; i1<hkl_info.stored_ki_max; i1++) {
if(hkl_info.stored[i1].nhkl>0) {
kmag = sqrt(hkl_info.stored[i1].kx*hkl_info.stored[i1].kx + hkl_info.stored[i1].ky*hkl_info.stored[i1].ky + hkl_info.stored[i1].kz*hkl_info.stored[i1].kz);
kdir = (kix*hkl_info.stored[i1].kx + kiy*hkl_info.stored[i1].ky + kiz*hkl_info.stored[i1].kz) / ki / kmag;
if(fabs(kdir-1)<1e-4 && fabs(kmag-ki)<0.01) {
klist = i1;
break;
}
}
}
// If no previous ki's that can scatter is in the list, generate it.
if(klist<0) {
int *tmp_list; tmp_list = (int*)malloc(hkl_info.count*sizeof(int));
klist = hkl_info.last_stored;
hkl_info.last_stored++;
if (hkl_info.last_stored>=hkl_info.stored_ki_max) hkl_info.last_stored=0;
hkl_info.stored[klist].nhkl = 0;
hkl_info.stored[klist].kx = kix;
hkl_info.stored[klist].ky = kiy;
hkl_info.stored[klist].kz = kiz;
for(i1=0; i1<hkl_info.nSw; i1++) {
if(hkl_info.list[hkl_info.SwQi[i1][0]].chki > (2*ki)) break; // Further hkl points not kinematically possible
for(i2=0; i2<hkl_info.nQ[i1]; i2++) {
kfx = kix - hkl_info.list[hkl_info.SwQi[i1][i2]].qx;
kfy = kiy - hkl_info.list[hkl_info.SwQi[i1][i2]].qy;
kfz = kiz - hkl_info.list[hkl_info.SwQi[i1][i2]].qz;
kf2 = kfx*kfx + kfy*kfy + kfz*kfz;
en = 2.072124*(ki2 - kf2);
// If the energy transfer for this S(q,w) point matches |ki|-|kf|, add to list
if(fabs(en-hkl_info.list[hkl_info.SwQi[i1][i2]].en)<0.001) { // energy fudge factor
tmp_list[hkl_info.stored[klist].nhkl] = hkl_info.SwQi[i1][i2];
hkl_info.stored[klist].nhkl++;
}
}
}
if(hkl_info.stored[klist].nhkl == 0) { // No dispersion surface E(hkl) can be satisfied with this ki direction.
// Add current ki to "bad" list
hkl_info.badx[hkl_info.nextbad] = kix;
hkl_info.bady[hkl_info.nextbad] = kiy;
hkl_info.badz[hkl_info.nextbad] = kiz;
hkl_info.nbad++;
hkl_info.nextbad++;
if(hkl_info.nbad>hkl_info.maxbad) hkl_info.nbad=hkl_info.maxbad;
if(hkl_info.nextbad>hkl_info.maxbad) hkl_info.nextbad=0;
ABSORB; // Should propagate it out of the crystal ...
break;
}
else {
// Add current ki to "good" list
hkl_info.stored[klist].hkl = (int*)malloc(hkl_info.stored[klist].nhkl*sizeof(int));
hkl_info.stored[klist].CDF = (double*)malloc(hkl_info.stored[klist].nhkl*sizeof(double));
// Construct a cumulative distribution of the found hkle
hkl_info.stored[klist].CDF[0] = hkl_info.list[tmp_list[0]].SQW;
for(i1=0; i1<hkl_info.stored[klist].nhkl; i1++) {
hkl_info.stored[klist].hkl[i1] = tmp_list[i1];
if(i1>0) hkl_info.stored[klist].CDF[i1] = hkl_info.stored[klist].CDF[i1-1] + hkl_info.list[tmp_list[i1]].SQW;
}
}
free(tmp_list);
}
int notfound = 1;
do {
// Sample from the generated CDF, but double check that EN matches |ki|-|kf| for this actual ki
// since we could be using saved values from a slightly different ki.
double u = rand0max(hkl_info.stored[klist].CDF[hkl_info.stored[klist].nhkl-1]);
for(i1=0; i1<hkl_info.stored[klist].nhkl; i1++) if(u<hkl_info.stored[klist].CDF[i1]) break;
if(i1>0) {
i1 = (u-hkl_info.stored[klist].CDF[i1])<(hkl_info.stored[klist].CDF[i1]-u) ? i1-1 : i1;
}
j = hkl_info.stored[klist].hkl[i1];
en = hkl_info.list[j].en;
kfx = kix - hkl_info.list[j].qx;
kfy = kiy - hkl_info.list[j].qy;
kfz = kiz - hkl_info.list[j].qz;
kf2 = kfx*kfx + kfy*kfy + kfz*kfz;
kf = sqrt(kf2);
notfound++;
if(notfound>100) {
break;
}
if(fabs(en-2.072124*(ki2-kf2))<0.001) { notfound = 0; } //else { printf("retry\n"); }
} while (notfound);
if(notfound>100) {
// Should continue to propagate the neutron...
ABSORB;
break;
}
// Ignore absorption, multiple scattering and incoherent scattering for the moment (!)
p = p0 * hkl_info.list[j].SQW;
vx = K2V*kfx; vy = K2V*kfy; vz = K2V*kfz;
fprintf(hist,"%12.8f %12.8f (%12.8f %12.8f, %12.8f) %12.8f %12.8f %6d\n",ki,kf,en,2.072124*(ki*ki-kf*kf),fabs(en-2.072124*(ki*ki-kf*kf)),u,hkl_info.list[j].SQW,j);
SCATTER;
break;
/* exit if multiple scattering order has been reached */
if (order && event_counter >= order) { intersect=0; break; }
/* Repeat loop for next scattering event. */
} while (intersect); /* end do (intersect) (multiple scattering loop) */
} /* if intersect */
%}
FINALLY
%{
fclose(hist);
if (hkl_info.flag_warning)
fprintf(stderr, "Single_crystal_inelastic: %s: Error message was repeated %i times with absorbed neutrons.\n",
NAME_CURRENT_COMP, hkl_info.flag_warning);
%}
MCDISPLAY
%{
magnify("xyz");
if (hkl_info.shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
}
else if (hkl_info.shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (hkl_info.shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, radius);
circle("xz", 0, 0.0, 0, radius);
circle("yz", 0, 0.0, 0, radius);
}
else if (hkl_info.shape == 3) { /* OFF file */
off_display(offdata);
}
%}
END
|