File: Spherical_Backscattering_Analyser.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (239 lines) | stat: -rw-r--r-- 7,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2011, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component Spherical_Backscattering_Analyser
*
* %I
* Written by: Nikolaos Tsapatsaris (with help from Peter Willendrup, Ruep Lechner, Heloisa Bordallo)
* Date: 2015
* Origin: Niels Bohr Institute
* 
* %D
* Spherical backscattering analyser with variable reflectivity, and mosaic gaussian response.
*
* Based on earlier developments by Miguel A. Gonzalez 2000, Tilo Seydel 2007, Henrik Jacobsen 2011.
*
* Example:
* COMPONENT doppler = Spherical_Backscattering_Analyser(
*   xmin=0, xmax=0, ymin=0, ymax=0, mosaic=21.0, dspread=0.00035, Q=2.003886241, DM=0, radius=2.5, f_doppler=0, A_doppler=0, R0=1, debug=0)
*
* %P
* xmin:          [m] Minimum absolute value of x =~ 0.5 * Width of the monochromator
* xmax:          [m] Maximum absolute value of x =~ 0.5 * Width of the monochromator
* ymin:          [m] Minimum absolute value of x =~ 0.5 * Width of the monochromator
* ymax:          [m] Maximum absolute value of y =~ 0.5 * Height of the monochromator
* radius:        [m] Curvature radius 
* dspread:       [1] Relative d-sprea, FWHM
* mosaic:  [arc min] Mosaicity, FWHM
* Q:          [AA-1] Magnitude of scattering vector 
* R0:            [1] Scalar, maximum reflectivity of neutrons
* DM:           [AA] monochromator d-spacing instead of Q = 2*pi/DM
* f_doppler:    [Hz] Frequency of doppler drive
* A_doppler:     [m] Amplitude of doppler drive
* debug:         [1] if debug > 0 print out some info about the calculations
*
*******************************************************************************/

DEFINE COMPONENT Spherical_Backscattering_Analyser

SETTING PARAMETERS (xmin=0, xmax=0, ymin=0, ymax=0, mosaic=21.0, dspread=0.00035, Q=2.003886241, DM=0, radius=2.5, f_doppler=0, A_doppler=0, R0=1, debug=0)


SHARE
%{
  double z_sphere(double xin, double yin, double rin) {
    return -(rin - sqrt(rin*rin - xin*xin - yin*yin));
  }

%}

DECLARE
%{
  double d_rms;
  double mos_rms;
  double mono_Q;
%}

INITIALIZE
%{
  mos_rms = MIN2RAD*mosaic/sqrt(8*log(2));
  
  mono_Q = Q;
  if (DM != 0) 
    mono_Q = 2*PI/DM;
  
  DM = 2*PI/mono_Q;
  d_rms = dspread*DM/sqrt(8*log(2));
%}

TRACE
%{  
  double vel;
    double sinTheta, lambdaBragg, lambda, dLambda2, sigmaLambda2;

  double old_x, old_y, old_z, old_t, x0, y0, z0, xi, yi, zi;
  double a, b, c, dt1, dt2, dt;
  double nx, ny, nz, nmod, v;
  double kproj, ydarwin, dkz, p_reflect; 
  double q0mod, q0x, q0y, q0z, kix, kiy, kiz, kfx, kfy, kfz;
        
  double omega_doppler;
  double v_doppler_inst;
    
  omega_doppler=2*PI*f_doppler;
   old_x=x; old_y=y; old_z=z; old_t=t;
    
  // Time interval necessary for the neutron to reach the sphere: solve equation: neutron path (line) crosses monochromator (sphere). Center of sphere is at (0,0,-radius).

//point on neutron path satisfies: xpath= x+vx*t, ypath=y+vy*t, zpath=z+vz*t;
//point on monochromator sphere satisfies: radius^2=x^2+y^2+(z+r)^2
//settings these equal gives an equation for t:
  a = vx*vx + vy*vy + vz*vz;
  b = 2.0 * ( vx*x + vy*y + vz*(z+radius) );  
  c = x*x+y*y+z*z + 2*z*radius;
  if ((b*b-4*a*c) < 0)
     {
      printf("Imaginary solutions. Something has gone wrong. Unphysical.\n");
      ABSORB;
     } 
  dt1 = (-b + sqrt(b*b-4*a*c)) / (2.0*a);
  dt2 = (-b - sqrt(b*b-4*a*c)) / (2.0*a);
  if (dt1 > 0)
     dt = dt1;
  else
     dt = dt2;   
  // propagates the neutron the time dt, so it arrives to the sphere

  PROP_DT(dt);
  
// ABSORB if neutron hits outside sphere
  if (x<xmin || x>xmax || y<ymin || y>ymax)
    ABSORB;

//n is a vector pointing along the radius of the sphere
  nx =x;
  ny= y;
  nz=(z+radius);
//modulus of the vector  n
nmod = sqrt(nx*nx+ny*ny+nz*nz);

// change to moving coordinates (doppler motion parallel to Z) 
  v_doppler_inst=A_doppler*omega_doppler*cos(omega_doppler*t);
  kix = vx*V2K; kiy = vy*V2K ; kiz = vz*V2K + v_doppler_inst*V2K;

// projection of the incident vector on the normal 
   kproj = (kix*nx + kiy*ny + kiz*nz) / nmod;
  
  vel=sqrt(a);  
  
  sinTheta = fabs(K2V*kproj)/vel;  
    
    // calculate lambdaBragg
    lambdaBragg = 2.0*DM*sinTheta;
    
    // calculate lambda of neutron
    lambda = 2*PI/kproj;
        
    // calculate deltaLambda squared and sigmaLambda squared
    dLambda2 = (lambda-lambdaBragg)*(lambda-lambdaBragg);
    // The sigmaLambda is propagated by differentiating the bragg 
    // condition: Lambda = 2*d*sinTheta
  
    sigmaLambda2 = 2.0*2.0 * sinTheta*sinTheta * d_rms*d_rms+2.0*2.0 * DM*DM * (1.0-sinTheta*sinTheta) * mos_rms*mos_rms;
      
    p_reflect = R0*exp(-dLambda2/(2.0*sigmaLambda2));

      if (p_reflect < 1e-5)
        {
          ABSORB;
        }
        else
        {
    // reflection: kf = ki - Q0 (the projection): q points along the normal and to scatter elastically, the component of ki along the normal must change sign, i.e. q0mod=2kproj
    q0mod = 2.0 * kproj;
    q0x = (nx/nmod)*q0mod; q0y = (ny/nmod)*q0mod;  q0z = (nz/nmod)*q0mod;
    kfx = kix - q0x;
    kfy = kiy - q0y;
    kfz = kiz - q0z;
    
      /* change to static coordinates */
      kfz = kfz - v_doppler_inst*V2K;
    
      vx = K2V*kfx;       
    vy = K2V*kfy;
      vz = K2V*kfz;

    p *= p_reflect; 
    SCATTER;
  }
  
    if(debug > 0) {
      printf("\n Lambda: %f, Lambda_Bragg: %f\n", lambda, lambdaBragg);
      printf("sigmaLambda: %f, R0: %f, p_reflect: %f\n", 
       sqrt(sigmaLambda2), R0, p_reflect);}
%}

MCDISPLAY
%{

  /*  dashed_line(xmin,ymin,0,xmin,ymax,0,5);
  dashed_line(xmin,ymax,0,xmax,ymax,0,5);
  dashed_line(xmax,ymax,0,xmax,ymin,0,5);
  dashed_line(xmax,ymin,0,xmin,ymin,0,5);*/

/* Step across the sphere in 11x11 steps to show the analyzer geometry */
  int i,j,N;
  double yv1,yv2,zv1,zv2;
  double xh1,xh2,zh1,zh2;
  double xd1,xd2,yd1,yd2,xd3,xd4,yd3,yd4,zd1,zd2,zd3,zd4;
  double dx,dy,dd;
  N=11;
  dx = (xmax-xmin)/(N-1);
  dy = (ymax-ymin)/(N-1);
  /* Horizontal, vertical, diagonal lines... */
  xh1=xmin;
  yv1=ymin;
  xd1=xmin;
  yd1=ymin;
  xd3=xmin;
  yd3=ymax;
  for (i=0; i<N-1; i++) {
    /* Calculate z-coordinates of 1st line-point(s)*/
    zh1=z_sphere(xh1,ymin,radius);
    zv1=z_sphere(xmin,yv1,radius);
    zd1=z_sphere(xd1,yd1,radius);
    zd3=z_sphere(xd3,yd3,radius);
    /* 2nd point x-y values */
    xh2=xh1+dx;
    yv2=yv1+dy;

    xd2=xd1+dx;
    yd2=yd1+dy;

    xd4=xd3+dx;
    yd4=yd3-dy;
    /* Calculate z-coordinates of 2nd set of line-point(s)*/
    zh2=z_sphere(xh1,ymin,radius);
    zv2=z_sphere(xmin,yv2,radius);
    zd2=z_sphere(xd2,yd2,radius);
    zd4=z_sphere(xd4,yd4,radius);
    /* Horizontal: */
    line(xh1,ymin,zh1,xh2,ymin,zh2);
    line(xh1,ymax,zh1,xh2,ymax,zh2);
    /* Vertical: */
    line(xmin,yv1,zv1,xmin,yv2,zv2);
    line(xmax,yv1,zv1,xmax,yv2,zv2);
    /* Diagonal: */
    line(xd1,yd1,zd1,xd2,yd2,zd2);
    line(xd3,yd3,zd3,xd4,yd4,zd4);
    /* Shift to next set of points ... */
    xh1=xh2; yv1=yv2; xd1=xd2; yd1=yd2; xd3=xd4; yd3=yd4;
  }
  
%}

END