1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*******************************************************************************
* McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: RTP_DIF
*
* %Identification
* Written by: E. Farhi and Megat Harun Al-Rashid
* Date: June 2014
* Origin: ILL/RTP
* %INSTRUMENT_SITE: TRIGA
*
* A powder diffractometer at Reactor TRIGA PUSPATI (Malaysia)
*
* %Description
*
*
* Example: mcrun RTP_DIF.instr lambda=2.36 Detector: det_I=170
*
* %Parameters
* lambda: [Angs] Monochromator selected wavelength
* DM: [Angs] d-spacing for the monochromator reflection
* Mono_tilt: [deg] Tilt angle magnitude for the inner/outer mono slabs
* powder: [str] Filename of the powder sample
* det_rotation: [deg] Rotation of the portable detector
*
* %Link
* <a href="http://www.nuclearmalaysia.gov.my/Plant&Facilities/reactor.php">Nuclear Malaysia</a>
* %Link
* M. Sufi et al., J. AppL Cryst. (1997). 30, 884-888 [doi:10.1107/S0021889897001738]
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT RTP_DIF(lambda=2.36, DM=3.355, Mono_tilt=0, string powder="Na2Ca3Al2F14.laz", det_rotation=45)
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
USERVARS
%{
double mono_index;
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
printf("RTP_DIF: Monochromator take-off angle=%g [deg]\n",
2*asin(lambda/2/DM)*RAD2DEG);
%}
/* Here comes the TRACE section, where the actual */
/* instrument is defined as a sequence of components. */
TRACE
/* The Arm() class component defines reference points and orientations */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used */
/* for further RELATIVE reference, Other useful keywords are : ROTATED */
/* EXTEND GROUP PREVIOUS. Also think about adding a neutron source ! */
/* Progress_bar is an Arm displaying simulation progress. */
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
/* the source is focused in wavelength to provide 5 Angs neutrons */
/* to study the Be filter, use white beam e.g. dlambda = 4.5 */
COMPONENT source = Source_gen(
radius = .154/2,
dist = 1.16+1.50, focus_xw = .11, focus_yh = .03, lambda0 = lambda,
dlambda = .2, I1 = 2.79e12/4/PI, T1 = 300)
AT (0, 0, 0) RELATIVE Origin
COMPONENT CoarseCollimator1 = Guide(w1=.154, h1=.154, l=1.16125,m=0)
AT (0, 0, .01) RELATIVE PREVIOUS
COMPONENT CoarseCollimator2 = Guide(w1=.11, h1=.11, l=1.5,m=0)
AT (0, 0, 1.16125+0.003) RELATIVE PREVIOUS
/* a slit that also detects wavelength */
COMPONENT lmon = Monitor_nD(
xwidth=.11, options="slit disk, auto wavelength", bins=50)
AT (0, 0, 1.5+0.01) RELATIVE PREVIOUS
/* Be filter ---------------------------------------------------------------- */
COMPONENT Be_Position = Arm()
AT (0, 0, .147+.15/2) RELATIVE PREVIOUS
/* monochromator ------------------------------------------------------------ */
SPLIT COMPONENT mono_cradle = Arm()
AT (0, 0, .145+.15/2+.176) RELATIVE Be_Position
COMPONENT mono_rotation = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, -asin(lambda/2/DM)*RAD2DEG, 0) RELATIVE mono_cradle
EXTEND %{
mono_index=0;
%}
COMPONENT mono1 = Monochromator_curved(
width=.11, height=.03, NH=1,NV=1, RH=0, RV=0,
DM=DM, mosaich=48, mosaicv=48,
reflect="HOPG.rfl", transmit="HOPG.trm")
AT (-.01, 0, 0) RELATIVE mono_rotation
ROTATED (0, Mono_tilt, 0) RELATIVE mono_rotation
EXTEND %{
if (SCATTERED) mono_index=1;
%}
COMPONENT mono2 = COPY(mono1)
AT (0, 0, 0) RELATIVE mono_rotation
ROTATED (0, 0, 0) RELATIVE mono_rotation
EXTEND %{
if (SCATTERED) mono_index=2;
%}
COMPONENT mono3 = COPY(mono1)
AT (0.01, 0, 0) RELATIVE mono_rotation
ROTATED (0, -Mono_tilt, 0) RELATIVE mono_rotation
EXTEND %{
if (SCATTERED) mono_index=3;
%}
COMPONENT mono_takeoff = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, -2*asin(lambda/2/DM)*RAD2DEG, 0) RELATIVE mono_cradle
COMPONENT psd_transmit = Monitor_nD(xwidth=.12, yheight=.12, options="x y", bins=50)
AT (0, 0, 0.25) RELATIVE mono_cradle
GROUP mono_rt
/* primary collimator (flight path) 3.8 m ----------------------------------- */
COMPONENT psd_reflect = Monitor_nD(xwidth=.12, yheight=.12, options="x y", bins=50)
AT (0, 0, 0.574) RELATIVE mono_takeoff
GROUP mono_rt
/*COMPONENT lmon_reflect = Monitor_nD(
xwidth=.02, yheight=.02, user1=mono_index,
options="disk slit, auto wavelength, user1 limits=[0 4]", bins=50)
AT (0, 0, 0.575) RELATIVE mono_takeoff*/
COMPONENT sample_psd = Monitor_nD(
xwidth=.02, yheight=.02, options="disk slit, x y", bins=50)
AT (0, 0, 0.575+.50) RELATIVE mono_takeoff
/* sample ------------------------------------------------------------------- */
/* from JAC 1997: flux at sample = 3900 n/s/cm2 */
SPLIT 100 COMPONENT sample_position = Arm()
AT (0, 0, .575+.5+.01) RELATIVE mono_takeoff
COMPONENT container_in = PowderN(
radius=0.01/2, yheight=0.04, thickness=-50e-6,
reflections="V.lau", concentric=1, d_phi=50, p_transmit=.95)
AT (0, 0, 0) RELATIVE sample_position
COMPONENT sample = PowderN(
radius=0.01/2, yheight=0.04, reflections=powder, d_phi=atan2(0.5,1)*RAD2DEG)
AT (0, 0, 0) RELATIVE sample_position
EXTEND %{
if (!SCATTERED) ABSORB;
%}
COMPONENT container_out = COPY(container_in)(concentric=0)
AT (0, 0, 0) RELATIVE sample_position
COMPONENT sample_out = Arm()
AT (0,0,0) RELATIVE sample_position
ROTATED (0,det_rotation,0) RELATIVE sample_position
COMPONENT det_big = Monitor_nD( options="banana theta limits=[-150 150] bins=300, y bins=64",
radius=1, yheight=.5)
AT (0, 0, 0) RELATIVE sample_position
/* secondary flight path (detector tube) 4m --------------------------------- */
COMPONENT det = Monitor_nD(xwidth=.5, yheight=.0254, bins=25, options="x")
AT (0, 0, 1) RELATIVE sample_out
COMPONENT reactor = Shape(radius=.7/2, yheight=.4)
AT (0,0,-.35) RELATIVE Origin
/* This section is executed when the simulation ends (C code). Other */
/* optional sections are : SAVE */
FINALLY
%{
%}
/* The END token marks the instrument definition end */
END
|