File: Test_Magnetic_Rotation.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (152 lines) | stat: -rw-r--r-- 4,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/***************************************************************************
*         McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: Test_Magnetic_Rotation
*
* %Identification
* Written by: Peter Christiansen and Peter Willendrup
* Date: August 2006
* Origin: RISOE
* %INSTRUMENT_SITE: Tests_polarization
*
* This instrument demonstrates how to use the Pol_constBfield
* component.
*
* %Description
* This instrument demonstrates how to use the component
* Pol_constBfield to make a Mezei Spin flipper.
*
* See:
* Seeger et al. NIM A: Volume 457, Issues 1-2 , 11 January 2001, Pages 338-346
*
* %Example: -n1e5 RESTORENEUT=1 Detector: MPLMonNum2Y_I=3.54525
*
* %Parameters
* RESTORENEUT: [] RESTORE_NEUTRON flag for last monitor within field region.
*
* %Link
*
* %End
****************************************************************************/
DEFINE INSTRUMENT Test_Magnetic_Rotation(RESTORENEUT=1)

DECLARE
%{
  const double magnetLength =  0.2;
  double Bmagnitude;


  %}

/* The INITIALIZE section is executed when the simulation starts     */
/* (C code). You may use them as component parameter values.         */
INITIALIZE
%{
  // we want to set Bmagnitude to the value that the adiabicity
  // E=2/PI(-gamma_n*Bmagnitude)*deltaT
  // for a 10AA neutron is 20 to compare with Figure 1 in the
  // paper by Seeger and Daemen on the NISP algorithm.
  double vel = 2*PI/10*K2V;
  double deltaT =  magnetLength/vel;

  printf("deltaT = %f\n", deltaT);

  Bmagnitude = PI/2*20/deltaT/183.247e6; // Tesla
  printf("Bmagnitude = %f T\n", Bmagnitude);
  %}

/* Here comes the TRACE section, where the actual      */
/* instrument is defined as a sequence of components.  */
TRACE

/* The Arm() class component defines reference points and orientations  */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of  */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used   */
/* for further RELATIVE reference, Other useful keywords are : ROTATED  */
/* EXTEND GROUP PREVIOUS. Also think about adding a neutron source !    */
/* Progress_bar is an Arm displaying simulation progress.               */
COMPONENT Origin = Progress_bar()
     AT (0,0,0) ABSOLUTE

COMPONENT source =
Source_simple(radius = 0.01, dist = 1.0, focus_xw = 0.01, focus_yh = 0.01, lambda0 = 5,
	      dlambda = 4.99, flux = 1)
     AT (0, 0, 0) RELATIVE Origin

COMPONENT polSetter =
Set_pol(py=1)
     AT (0, 0, 0.5) RELATIVE Origin

COMPONENT pollambdaMonitor1x =
PolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0, npol=21,
		  mx=1, my=0, mz=0, filename="pollambdaMon1x.data")
     AT (0, 0, 0.75) RELATIVE Origin

COMPONENT pollambdaMonitor1y =
PolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0, npol=21,
		  mx=0, my=1, mz=0, filename="pollambdaMon1y.data")
     AT (0, 0, 0.75) RELATIVE Origin

COMPONENT pollambdaMonitor1z =
PolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0, npol=21,
		  mx=0, my=0, mz=1, filename="pollambdaMon1z.data")
     AT (0, 0, 0.75) RELATIVE Origin

COMPONENT magnetNum =
Pol_Bfield(field_type=2, xwidth=0.08, yheight=0.08, zdepth=magnetLength,
	   Bx = 0, By = Bmagnitude, Bz = 0, concentric=1)
     AT (0, 0, 1.0) RELATIVE Origin
/*
COMPONENT MPLMonNum2X_1 =
MeanPolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0,
		  mx=1, my=0, mz=0, filename="MPLMonNum2X_1.data")
     AT (0, 0, magnetLength/2) RELATIVE magnetNum
*/

COMPONENT MPLMonNum2Y_1 =
MeanPolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0,
		  mx=0, my=1, mz=0, filename="MPLMonNum2Y_1.data",restore_neutron=RESTORENEUT)
     AT (0, 0, magnetLength/2) RELATIVE magnetNum
/*
COMPONENT MPLMonNum2Z_1 =
MeanPolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0,
		  mx=0, my=0, mz=1, filename="MPLMonNum2Z_1.data")
     AT (0, 0, magnetLength/2) RELATIVE magnetNum
*/
COMPONENT magnetNumCp =
Pol_Bfield_stop()
  AT(0,0,magnetLength) RELATIVE magnetNum

COMPONENT MPLMonNum2X =
MeanPolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0,
		  mx=1, my=0, mz=0, filename="MPLMonNum2X.data")
     AT (0, 0, 1.5) RELATIVE Origin

COMPONENT MPLMonNum2Y =
MeanPolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0,
		  mx=0, my=1, mz=0, filename="MPLMonNum2Y.data")
     AT (0, 0, 1.5) RELATIVE Origin

COMPONENT MPLMonNum2Z =
MeanPolLambda_monitor(xwidth=0.1, yheight=0.1,
		  nL=100, Lmin = 0.0, Lmax = 10.0,
		  mx=0, my=0, mz=1, filename="MPLMonNum2Z.data")
     AT (0, 0, 1.5) RELATIVE Origin


/* This section is executed when the simulation ends (C code). Other    */
/* optional sections are : SAVE                                         */
FINALLY
%{
  %}
/* The END token marks the instrument definition end */
END