1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*******************************************************************************
* McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: reflectometer
*
* %Identification
* Written by: Pia Jensen (bozack@bozack.dk)
* Date: 13.08.2012
* Origin: Niels Bohr Instute, University of Copenhagen
* Release: McStas 2.x
* Version: 0.2
* %INSTRUMENT_SITE: e-learning
*
* Simple reflectometer with two slits, a sample (either none, mirror or multilayer),
* and a detector. For use in the OMIC summer school 2012.
*
* %Description
* This simple reflectometer consists of a source (using the standard PSI parameters
* for three Maxwellian distributions), on which the user can control the bandwidth
* by simply choosing a minumum and maximum value. Two slits handle the divergence
* distribution on the sample. The sample itself can either be an empty spot, a simple
* mirror, or a multilayer. A simple PSD detector is used for detecting the scattered
* beam. The scattering is in the horizontal plane.
*
* Example: mcrun reflectometer.instr <parameters=values>
*
* %Parameters
* lambda_min: [AA] Minimum wavelength from source
* lambda_max: [AA] Maximum wavelength from source
* slittranslation: [m] Translation of slit (horizontal)
* sampletranslation: [m] Sample translation (horizontal)
* slitwidth: [m] Width of slit pinholes
* slitheight: [m] Height of slit pinholes
* dist_source2slit: [m] Distance between source and first slit
* dist_slit2slit: [m] Distance between slits
* dist_slit2sample: [m] Distance between second slit and sample
* dist_sample2detector: [m] Distance between sample and detector
* sampletype: [1] Sample type: 0 none, 1 mirror, 2+ multilayer
* samplesize: [m] Side-length of the (quadratic) sample plate
* substratethickness: [m] Thickness of the substrate
* MR_Qc: [AA] Critical Q-vector length of mirror sample
* sampleangle: [deg] Rotation angle of sample (theta)
* detectorangle: [deg] Rotation angle of detector (2 theta)
*
* The sample types are as follows:
* 0 no sample (for looking at direct beam)
* 1 simple mirror (for alignment purposes)
* 2 d54DMPC-D2O
* 3 d54DMPC-H2O
* 4 hDMPC-D2O
* 5 hDMPC-H2O
* 6 silicon-D2O
* 7 silicon-H2O
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT Reflectometer(
lambda_min = 5.3,
lambda_max = 5.45,
slittranslation = 0,
sampletranslation = 0,
slitwidth = 0.001,
slitheight = 0.002,
dist_source2slit = 1,
dist_slit2slit = 3.2,
dist_slit2sample = 0.18,
dist_sample2detector = 2,
sampletype = 1,
samplesize = 0.15,
substratethickness = 0.003,
MR_Qc = 0.15,
sampleangle = 2.5,
detectorangle = 5
)
DECLARE
%{
double blocktranslation;
%}
INITIALIZE
%{
blocktranslation = -slittranslation;
%}
// Begin instrument
TRACE
// Origin
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
// Source (so far just with the PSI source distribution)
COMPONENT Source = Source_Maxwell_3(
size = 0.12,
Lmin = lambda_min,
Lmax = lambda_max,
dist = dist_source2slit+dist_slit2slit,
focus_xw = slitwidth, focus_yh = slitheight,
T1 = 150.42, T2 = 38.72, T3 = 14.84,
I1 = 3.67E11, I2 = 3.64E11, I3 = 0.95E11)
AT (0, 0, 0) RELATIVE Origin
/*COMPONENT mon_PSD_atSource = PSD_monitor(
nx = 100, ny = 100,
filename = "mon_PSD_atSource.dat",
xwidth = 0.2, yheight = 0.2,
restore_neutron = 1)
AT (0, 0, 0.01) RELATIVE Source
COMPONENT mon_div_atSource = Divergence_monitor(
nh = 100, nv = 100,
filename = "mon_div_atSource",
restore_neutron = 1,
xwidth = 0.2, yheight = 0.2,
maxdiv_h = 10, maxdiv_v = 10)
AT (0, 0, 1e-6) RELATIVE PREVIOUS
COMPONENT mon_Lmon_atSource = L_monitor(
nL = 100,
filename = "mon_Lmon_atSource.dat",
xwidth = 0.2, yheight = 0.2,
Lmin = 0, Lmax = 22,
restore_neutron = 1)
AT (0, 0, 1e-6) RELATIVE PREVIOUS
*/
// First slit
COMPONENT Slit1 = Slit(
xwidth = slitwidth, yheight = slitheight)
AT (0, 0, dist_source2slit) RELATIVE Source
/*
COMPONENT mon_PSD_afterSlit1 = PSD_monitor(
nx = 100, ny = 100,
filename = "mon_PSD_afterslit1.dat",
xwidth = slitwidth+0.1, yheight = slitheight+0.1,
restore_neutron = 1)
AT (0, 0, 0.01) RELATIVE Slit1
COMPONENT mon_div_afterSlit1 = Divergence_monitor(
nh = 100, nv = 100,
filename = "mon_div_afterSlit1",
restore_neutron = 1,
xwidth = slitwidth+0.1, yheight = slitheight+0.1,
maxdiv_h = 10, maxdiv_v = 10)
AT (0, 0, 1e-6) RELATIVE PREVIOUS
COMPONENT mon_Lmon_afterSlit1 = L_monitor(
nL = 100,
filename = "mon_Lmon_afterSlit1.dat",
xwidth = slitwidth+0.1, yheight = slitheight+0.1,
Lmin = 0, Lmax = 22,
restore_neutron = 1)
AT (0, 0, 1e-6) RELATIVE PREVIOUS
*/
// Second slit
COMPONENT Slit2 = Slit(
xwidth = slitwidth, yheight = slitheight)
AT (0, 0, dist_slit2slit) RELATIVE Slit1
/*COMPONENT mon_PSD_afterSlit2 = PSD_monitor(
nx = 100, ny = 100,
filename = "mon_PSD_afterslit2.dat",
xwidth = slitwidth+0.1, yheight = slitheight+0.1,
restore_neutron = 1)
AT (0, 0, 0.01) RELATIVE Slit2
COMPONENT mon_div_afterSlit2 = Divergence_monitor(
nh = 100, nv = 100,
filename = "mon_div_afterSlit2",
restore_neutron = 1,
xwidth = slitwidth+0.1, yheight = slitheight+0.1,
maxdiv_h = 10, maxdiv_v = 10)
AT (0, 0, 1e-6) RELATIVE PREVIOUS
COMPONENT mon_Lmon_afterSlit2 = L_monitor(
nL = 100,
filename = "mon_Lmon_afterSlit2.dat",
xwidth = slitwidth+0.1, yheight = slitheight+0.1,
Lmin = 0, Lmax = 22,
restore_neutron = 1)
AT (0, 0, 1e-6) RELATIVE PREVIOUS
*/
// Sample position and rotation arms
COMPONENT Arm_sampleNOROTNOTRANS = Arm()
AT (blocktranslation, 0, dist_slit2sample) RELATIVE Slit2
COMPONENT Arm_sampleNOROT = Arm()
AT (sampletranslation, 0, 0) RELATIVE Arm_sampleNOROTNOTRANS //Slit2 //??
COMPONENT Arm_sample = Arm()
AT (0, 0, 0) RELATIVE Arm_sampleNOROT
ROTATED (0, sampleangle, 0) RELATIVE Arm_sampleNOROT // originally Source...
// MIRROR sample
COMPONENT Sample_Mirror = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
R0 = 0.99, Qc = MR_Qc, alpha = 6.07, m = 1, W = 0.003)
WHEN (sampletype == 1) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
COMPONENT Sample_Mirror_backside = Isotropic_Sqw(
rho=1/13.827, sigma_abs=500.08, sigma_inc=4.935, sigma_coh=0,
xwidth = samplesize, yheight = samplesize, zdepth = substratethickness)
WHEN (sampletype == 1) AT (0, 0, -substratethickness/2-1e-6) RELATIVE Sample_Mirror
// MULTILAYER samples
COMPONENT Sample_Multilayer1 = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
reflect = "d54DMPC-D2O.dat")
WHEN (sampletype == 2) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
COMPONENT Sample_Multilayer2 = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
reflect = "d54DMPC-H2O.dat")
WHEN (sampletype == 3) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
COMPONENT Sample_Multilayer3 = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
reflect = "hDMPC-D2O.dat")
WHEN (sampletype == 5) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
COMPONENT Sample_Multilayer4 = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
reflect = "hDMPC-H2O.dat")
WHEN (sampletype == 6) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
COMPONENT Sample_Multilayer5 = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
reflect = "silicon-D2O.dat")
WHEN (sampletype == 6) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
COMPONENT Sample_Multilayer6 = Mirror(
xwidth = samplesize, yheight = samplesize, center = 1,
reflect = "silicon-H2O.dat")
WHEN (sampletype == 7) AT (0, 0, 0) RELATIVE Arm_sample
ROTATED (0, 90, 0) RELATIVE Arm_sample
// Detector
COMPONENT Arm_detectorONLYROT = Arm()
AT (0, 0, 0) RELATIVE Arm_sampleNOROTNOTRANS
ROTATED (0, detectorangle, 0) RELATIVE Source
COMPONENT Arm_detector = Arm()
AT (0, 0, dist_sample2detector) RELATIVE Arm_detectorONLYROT
COMPONENT Detector = PSD_monitor(
nx = 200, ny = 200,
filename = "mon_detector",
restore_neutron = 1,
xwidth = 0.025, yheight = 0.05)
AT (0, 0, 0) RELATIVE Arm_detector
FINALLY
%{
%}
END
|