File: DivPos_monitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (161 lines) | stat: -rw-r--r-- 4,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: DivPos_monitor
*
* %I
* Written by: Kristian Nielsen
* Date: 1999
* Origin: Risoe
*
* Divergence/position monitor (acceptance diagram).
*
* %D
* 2D detector for intensity as a function of position
* and divergence, either horizontally or vertically (depending on the flag vertical).
* This gives information similar to an aceptance diagram used
* eg. to investigate beam profiles in neutron guides.
*
* Example: DivPos_monitor(nh=20, ndiv=20, filename="Output.dip",
*           xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1, maxdiv_h=2)
*
* %P
* INPUT PARAMETERS:
*
* xmin: [m]             Lower x bound of detector opening
* xmax: [m]             Upper x bound of detector opening
* ymin: [m]             Lower y bound of detector opening
* ymax: [m]             Upper y bound of detector opening
* xwidth: [m]           Width of detector. Overrides xmin,xmax.
* yheight: [m]          Height of detector. Overrides ymin,ymax.
* nb: [1]               Number of bins in position.
* ndiv: [1]             Number of bins in divergence.
* nx: [1]
* ny: [1]               Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane
* nz: [1]
* maxdiv: [degrees]   Maximal divergence detected.
* filename: [string]    Name of file in which to store the detector image.
* restore_neutron: [1]  If set, the monitor does not influence the neutron state.
* vertical: [1]         Monitor intensity as a function of vertical divergence and position.
* nowritefile: [1]      If set, monitor will skip writing to disk
* CALCULATED PARAMETERS:
*
* Div_N: []             Array of neutron counts
* Div_p: []             Array of neutron weight counts
* Div_p2: []            Array of second moments
*
* %E
*******************************************************************************/

DEFINE COMPONENT DivPos_monitor



SETTING PARAMETERS (int nb=20, int ndiv=20, string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05,
		    xwidth=0, yheight=0, maxdiv=2, int restore_neutron=0, nx=0, ny=0, nz=1, int vertical=0, int nowritefile=0)


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

DECLARE
%{
  DArray2d Div_N;
  DArray2d Div_p;
  DArray2d Div_p2;
%}

INITIALIZE
%{
  if (xwidth  > 0) { xmax = xwidth/2;  xmin = -xmax; }
  if (yheight > 0) { ymax = yheight/2; ymin = -ymax; }

  if ((xmin >= xmax) || (ymin >= ymax)) {
          printf("DivPos_monitor: %s: Null detection area !\n"
                 "ERROR           (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting",
         NAME_CURRENT_COMP);
    exit(0);
  }

  Div_N = create_darr2d(nb, ndiv);
  Div_p = create_darr2d(nb, ndiv);
  Div_p2 = create_darr2d(nb, ndiv);

  NORM(nx,ny,nz);

  // Use instance name for monitor output if no input was given
  if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}

TRACE
%{
  int i,j;
  double div;
  double v, vn;

  PROP_Z0;
  if (x>xmin && x<xmax && y>ymin && y<ymax)
  {
    /* Find length of projection onto the [nx ny nz] axis */
    vn = scalar_prod(vx, vy, vz, nx, ny, nz);
    if(!vertical){
      div = RAD2DEG*atan2(vx,vn);
    }else{
      div = RAD2DEG*atan2(vy,vn);
    }

    if (div < maxdiv && div > -maxdiv)
    {
      if(!vertical){
        i = floor((x - xmin)*nb/(xmax - xmin));
      }else{
        i = floor((y - ymin)*nb/(ymax - ymin));
      }
      j = floor((div + maxdiv)*ndiv/(2.0*maxdiv));
      double p2 = p*p;
      #pragma acc atomic
      Div_N[i][j] = Div_N[i][j] + 1;
      #pragma acc atomic
      Div_p[i][j] = Div_p[i][j] + p;
      #pragma acc atomic
      Div_p2[i][j] = Div_p2[i][j] + p2;
      SCATTER;
    }
  }
  if (restore_neutron) {
    RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
  }
%}

SAVE
%{
if (!nowritefile) {
  DETECTOR_OUT_2D(
    "Position-divergence monitor","pos [m]","divergence [deg]",
    (!vertical?xmin:ymin), (!vertical?xmax:ymax), -maxdiv, maxdiv, nb, ndiv,
    &Div_N[0][0],&Div_p[0][0],&Div_p2[0][0],
    filename);
}
%}

FINALLY
%{
  destroy_darr2d(Div_N);
  destroy_darr2d(Div_p);
  destroy_darr2d(Div_p2);
%}

MCDISPLAY
%{

  multiline(5, (double)xmin, (double)ymin, 0.0,
               (double)xmax, (double)ymin, 0.0,
               (double)xmax, (double)ymax, 0.0,
               (double)xmin, (double)ymax, 0.0,
               (double)xmin, (double)ymin, 0.0);
%}

END