File: Divergence_monitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (156 lines) | stat: -rw-r--r-- 4,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Divergence_monitor
*
* %I
* Written by: Kim Lefmann
* Date: Nov. 11, 1998
* Origin: Risoe
*
* Horizontal+vertical divergence monitor.
*
* %D
* A divergence sensitive monitor. The counts are distributed in
* (n times m) pixels.
*
* Example: Divergence_monitor(nh=20, nv=20, filename="Output.pos",
*           xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1,
*           maxdiv_h=2, maxdiv_v=2)
*
* %P
* INPUT PARAMETERS:
*
* xmin: [m]             Lower x bound of detector opening
* xmax: [m]             Upper x bound of detector opening
* ymin: [m]             Lower y bound of detector opening
* ymax: [m]             Upper y bound of detector opening
* xwidth: [m]           Width of detector. Overrides xmin, xmax
* yheight: [m]          Height of detector. Overrides ymin, ymax
* nv: [1]               Number of pixel columns
* nh: [1]               Number of pixel rows
* nx: [1]
* ny: [1]               Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane
* nz: [1]
* maxdiv_v: [degrees]   Maximal vertical divergence detected
* maxdiv_h: [degrees]   Maximal vertical divergence detected
* filename: []          Name of file in which to store the detector image text
* restore_neutron: [1]  If set, the monitor does not influence the neutron state
* nowritefile: [1]      If set, monitor will skip writing to disk
*
* CALCULATED PARAMETERS:
*
* Div_N: []             Array of neutron counts
* Div_p: []             Array of neutron weight counts
* Div_p2: []            Array of second moments
*
* %E
*******************************************************************************/
DEFINE COMPONENT Divergence_monitor



SETTING PARAMETERS (int nh=20, int nv=20,
  string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, int nowritefile=0,
  xwidth=0, yheight=0, maxdiv_h=2, maxdiv_v=2, int restore_neutron=0, nx=0, ny=0, nz=1)


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

DECLARE
%{
  DArray2d Div_N;
  DArray2d Div_p;
  DArray2d Div_p2;
%}

INITIALIZE
%{
  if (xwidth  > 0) { xmax = xwidth/2;  xmin = -xmax; }
  if (yheight > 0) { ymax = yheight/2; ymin = -ymax; }

  if ((xmin >= xmax) || (ymin >= ymax)) {
    printf("Divergence_monitor: %s: Null detection area !\n"
           "ERROR               (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting",
           NAME_CURRENT_COMP);
    exit(0);
  }

  Div_N = create_darr2d(nh, nv);
  Div_p = create_darr2d(nh, nv);
  Div_p2 = create_darr2d(nh, nv);

  NORM(nx,ny,nz);

  // Use instance name for monitor output if no input was given
  if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}

TRACE
%{
  int i,j;
  double h_div, v_div;
  double v, vn;

  PROP_Z0;
  if (x>xmin && x<xmax && y>ymin && y<ymax)
  {
    /* Find length of projection onto the [nx ny nz] axis */
    vn = scalar_prod(vx, vy, vz, nx, ny, nz);
    h_div = RAD2DEG*atan2(vx,vn);
    v_div = RAD2DEG*atan2(vy,vn);
    if (h_div < maxdiv_h && h_div > -maxdiv_h &&
        v_div < maxdiv_v && v_div > -maxdiv_v)
    {
      i = floor((h_div + maxdiv_h)*nh/(2.0*maxdiv_h));
      j = floor((v_div + maxdiv_v)*nv/(2.0*maxdiv_v));
      double p2 = p*p;
      #pragma acc atomic
      Div_N[i][j] = Div_N[i][j] + 1;
      #pragma acc atomic
      Div_p[i][j] = Div_p[i][j] + p;
      #pragma acc atomic
      Div_p2[i][j] = Div_p2[i][j] + p2;
      SCATTER;
    }
  }
  if (restore_neutron) {
    RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
  }
%}

SAVE
%{
if (!nowritefile) {
  DETECTOR_OUT_2D(
      "Divergence monitor",
      "X divergence [deg]",
      "Y divergence [deg]",
      -maxdiv_h, maxdiv_h, -maxdiv_v, maxdiv_v,
      nh, nv,
      &Div_N[0][0],&Div_p[0][0],&Div_p2[0][0],
      filename);
}
%}

FINALLY
%{
  destroy_darr2d(Div_N);
  destroy_darr2d(Div_p);
  destroy_darr2d(Div_p2);
%}

MCDISPLAY
%{
  multiline(5, (double)xmin, (double)ymin, 0.0,
               (double)xmax, (double)ymin, 0.0,
               (double)xmax, (double)ymax, 0.0,
               (double)xmin, (double)ymax, 0.0,
               (double)xmin, (double)ymin, 0.0);
%}

END