1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Monitor_nD
*
* %Identification
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: 14th Feb 2000.
* Origin: <a href="http://www.ill.fr">ILL</a>
* Release: McStas 1.6
* Version: $Revision$
* Modified by: EF, 29th Feb 2000 : added more options, monitor shape, theta, phi
* Modified by: EF, 01st Feb 2001 : PreMonitor for correlation studies (0.13.6)
* Modified by: EF, 5th Apr 2001 : use global functions (0.14) compile faster
* Modified by: EF, 23th Jul 2001 : log of signal, init arrays to 0, box (0.15)
* Modified by: EF, 04th Sep 2001 : log/abs of variables (0.16)
* Modified by: EF, 24th Oct 2001 : capture flux [p*lambda/1.7985] (0.16.3)
* Modified by: EF, 27th Aug 2002 : monitor a variable in place of I (0.16.5)
* Modified by: EF, 25th Oct 2002 : banana, and auto for each variable (0.16.5)
*
* This component is a general Monitor that can output 0/1/2D signals
* (Intensity or signal vs. [something] and vs. [something] ...)
*
* %Description
* This component is a general Monitor that can output 0/1/2D signals
* It can produce many 1D signals (one for any variable specified in
* option list), or a single 2D output (two variables correlation).
* Also, an additional 'list' of neutron events can be produced.
* By default, monitor is square (in x/y plane). A disk shape is also possible
* The 'cylinder' and 'banana' option will change that for a banana shape
* The 'sphere' option simulates spherical detector. The 'box' is a box.
* The cylinder, sphere and banana should be centered on the scattering point.
* The monitored flux may be per monitor unit area, and weighted by
* a lambda/lambda(2200m/s) factor to obtain standard integrated capture flux.
* In normal configuration, the Monitor_nD measures the current parameters
* of the neutron that is beeing detected. But a PreMonitor_nD component can
* be used in order to study correlations between a neutron being detected in
* a Monitor_nD place, and given parameters that are monitored elsewhere
* (at <b>PreMonitor_nD</b>).
* The monitor can also act as a 3He gas detector, taking into account the
* detection efficiency.
*
* The 'bins' and 'limits' modifiers are to be used after each variable,
* and 'auto','log' and 'abs' come before it. (eg: auto abs log hdiv bins=10
* limits=[-5 5]) When placed after all variables, these two latter modifiers
* apply to the signal (e.g. intensity). Unknown keywords are ignored.
* If no limits are specified for a given observable, reasonable defaults will be
* applied. Note that these implicit limits are <b>even</b> applied in list mode.
*
* <b>Implicit limits for typical variables:</b>
* (consult monitor_nd-lib.c if you don't find your variable here)
* x, y, z: Derived from detection-object geometry
* k: [0 10] Angs-1
* v: [0 1e6] m/s
* t: [0 1] s
* p: [0 FLT_MAX] in intensity-units
* vx, vy: [-1000 1000] m/s
* vz: [0 10000] m/s
* kx, ky: [-1 1] Angs-1
* kz: [-10 10] Angs-1
* energy, omega: [0 100] meV
* lambda,wavelength: [0 100] Angs
* sx, sy, sz: [-1 1] in polarisation-units
* angle: [-50 50] deg
* divergence, vdiv, hdiv, xdiv, ydiv: [-5 5] deg
* longitude, lattitude: [-180 180] deg
* neutron: [0 simulaton_ncount]
* id, pixel id: [0 FLT_MAX]
* uservars u1,u2,u3: [-1e10 1e10]
*
* In the case of multiple components at the same position, the 'parallel'
* keyword must be used in each instance instead of defining a GROUP.
*
* <b>Possible options are</b>
* Variables to record:
* kx ky kz k wavevector [Angs-1] Wavevector on x,y,z and norm
* vx vy vz v [m/s] Velocity on x,y,z and norm
* x y z radius [m] Distance, Position and norm
* xy, yz, xz [m] Radial position in xy, yz and xz plane
* kxy kyz kxz [Angs-1] Radial wavevector in xy, yz and xz plane
* vxy vyz vxz [m/s] Radial velocity in xy, yz and xz plane
* t time [s] Time of Flight
* energy omega [meV] energy of neutron
* lambda wavelength [Angs] wavelength of neutron
* sx sy sz [1] Spin
* vdiv ydiv dy [deg] vertical divergence (y)
* hdiv divergence xdiv [deg] horizontal divergence (x)
* angle [deg] divergence from <z> direction
* theta longitude [deg] longitude (x/z) for sphere and cylinder
* phi lattitude [deg] lattitude (y/z) for sphere and cylinder
*
* user user1 will monitor the [Mon_Name]_Vars.UserVariable{1|2|3}
* user2 user3 to be assigned in an other component (see below)
*
* p intensity flux [n/s or n/cm^2/s]
* ncounts n neutron [1] neutron ID, i.e current event index
* pixel id [1] pixelID in histogram made of preceeding vars, e.g. 'theta y'. To set an offset PixelID use the 'min=value' keyword. Sets event mode.
*
* <b>Other options keywords are:</b>
* abs Will monitor the abs of the following variable or of the signal (if used after all variables)
* auto Automatically set detector limits for one/all
* all {limits|bins|auto} To set all limits or bins values or auto mode
* binary {float|double} with 'source' option, saves in compact files
* bins=[bins=20] Number of bins in the detector along dimension
* borders To also count off-limits neutrons (X < min or X > max)
* capture weight by lambda/lambda(2200m/s) capture flux
* file=string Detector image file name. default is component name, plus date and variable extension.
* incoming Monitor incoming beam in non flat det
* limits=[min max] Lower/Upper limits for axes (see up for the variable unit)
* list=[counts=1000] or all For a long file of neutron characteristics with [counts] or all events
* log Will monitor the log of the following variable or of the signal (if used after all variables)
* min=[min_value] Same as limits, but only sets the min or max
* max=[max_value]
* multiple Create multiple independant 1D monitors files
* no or not Revert next option
* outgoing Monitor outgoing beam (default)
* parallel Use this option when the next component is at the same position (parallel components)
* per cm2 Intensity will be per cm^2 (detector area). Displays beam section.
* per steradian Displays beam solid angle in steradian
* premonitor Will monitor neutron parameters stored previously with <b>PreMonitor_nD</b>.
* signal=[var] Will monitor [var] instead of usual intensity
* slit or absorb Absorb neutrons that are out detector
* source The monitor will save neutron states
* unactivate To unactivate detector (0D detector)
* verbose To display additional informations
* 3He_pressure=[3 in bars] The 3He gas pressure in detector. 3He_pressure=0 is perfect detector (default)
*
* Detector shape options (specified as xwidth,yheight,zdepth or x/y/z/min/max)
* box Box of size xwidth, yheight, zdepth.
* cylinder To get a cylindrical monitor (diameter is xwidth or set radius, height is yheight).
* banana Same as cylinder, without top/bottom, on restricted angular area; use theta variable with limits to define arc. (diameter is xwidth or set radius, height is yheight).
* disk Disk flat xy monitor. diameter is xwidth.
* sphere To get a spherical monitor (e.g. a 4PI) (diameter is xwidth or set radius).
* square Square flat xy monitor (xwidth, yheight).
* previous The monitor uses PREVIOUS component as detector surface. Or use 'geometry' parameter to specify any PLY/OFF geometry file.
*
* <b>EXAMPLES:</b>
* <ul>
* <li>MyMon = Monitor_nD(xwidth = 0.1, yheight = 0.1, zdepth = 0,
*   options = "intensity per cm2 angle,limits=[-5 5] bins=10,with
*   borders, file = mon1");
* will monitor neutron angle from [z] axis, between -5
* and 5 degrees, in 10 bins, into "mon1.A" output 1D file
*
* <li> options = "sphere theta phi outgoing"
* for a sphere PSD detector (out beam) and saves into file "MyMon_[Date_ID].th_ph"
*
* <li> options = "banana, theta limits=[10,130], bins=120, y"
* a theta/height banana detector
*
* <li> options = "angle radius all auto"
* is a 2D monitor with automatic limits
*
* <li> options = "list=1000 kx ky kz energy"
* records 1000 neutron event in a file
*
* <li> options = "multiple kx ky kz, auto abs log t, and list all neutrons"
* makes 4 output 1D files and produces a complete list for all neutrons
* and monitor log(abs(tof)) within automatic limits (for t)
*
* <li> options = "theta y, sphere, pixel min=100"
* a 4pi detector which outputs an event list with pixelID from the actual
* detector surface, starting from index 100.
*
* </ul>
* To dynamically define a number of bins, or limits:
* Use in DECLARE: char op[256];
* Use in INITIALIZE: sprintf(op, "lambda limits=[%g %g], bins=%i", lmin, lmax, lbin);
* Use in TRACE: Monitor_nD(... options=op ...)
*
* <b>How to monitor any instrument/component variable into a Monitor_nD</b>
* Suppose you want to monitor a variable 'age' which you assign somwhere in
* the instrument:
* COMPONENT MyMonitor = Monitor_nD(
* xwidth = 0.1, yheight = 0.1,
* user1="age", username1="Age of the Captain [years]",
* options="user1, auto")
* AT ...
*
* See also the example in <a href="PreMonitor_nD.html">PreMonitor_nD</a> to
* monitor neutron parameters cross-correlations.
*
* %BUGS
* The 'auto' option for guessing optimal variable bounds should NOT be used with MPI
* as each process may use different limits.
*
* %Parameters
* INPUT PARAMETERS:
*
* xwidth: [m] Width of detector.
* yheight: [m] Height of detector.
* zdepth: [m] Thickness of detector (z).
* radius: [m] Radius of sphere/banana shape monitor
* options: [str] String that specifies the configuration of the monitor. The general syntax is "[x] options..." (see <b>Descr.</b>).
*
* Optional input parameters (override xwidth yheight zdepth):
* xmin: [m] Lower x bound of opening
* xmax: [m] Upper x bound of opening
* ymin: [m] Lower y bound of opening
* ymax: [m] Upper y bound of opening
* zmin: [m] Lower z bound of opening
* zmax: [m] Upper z bound of opening
* filename: [str] Output file name (overrides file=XX option).
* bins: [1] Number of bins to force for all variables. Use 'bins' keyword in 'options' for heterogeneous bins
* min: [u] Minimum range value to force for all variables. Use 'min' or 'limits' keyword in 'options' for other limits
* max: [u] Maximum range value to force for all variables. Use 'max' or 'limits' keyword in 'options' for other limits
* user1: [str] Variable name of USERVAR to be monitored by user1.
* user2: [str] Variable name of USERVAR to be monitored by user2.
* user3: [str] Variable name of USERVAR to be monitored by user3.
* username1: [str] Name assigned to User1
* username2: [str] Name assigned to User2
* username3: [str] Name assigned to User3
* restore_neutron: [0|1] If set, the monitor does not influence the neutron state. Equivalent to setting the 'parallel' option.
* geometry: [str] Name of an OFF file to specify a complex geometry detector
* nowritefile: [1] If set, monitor will skip writing to disk
*
* CALCULATED PARAMETERS:
*
* DEFS: [struct] structure containing Monitor_nD Defines
* Vars: [struct] structure containing Monitor_nD variables
*
* %Link
* <a href="PreMonitor_nD.html">PreMonitor_nD</a>
*
* %End
******************************************************************************/
DEFINE COMPONENT Monitor_nD
SETTING PARAMETERS (
string user1="", string user2="", string user3="",
xwidth=0, yheight=0, zdepth=0,
xmin=0, xmax=0, ymin=0, ymax=0, zmin=0, zmax=0,
int bins=0, min=-1e40, max=1e40, int restore_neutron=0, radius=0,
string options="NULL", string filename="NULL",string geometry="NULL", int nowritefile=0,
string username1="NULL", string username2="NULL", string username3="NULL"
)
/* these are protected C variables */
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "monitor_nd-lib"
%include "read_table-lib"
%include "interoff-lib"
%}
DECLARE
%{
MonitornD_Defines_type DEFS;
MonitornD_Variables_type Vars;
MCDETECTOR detector;
off_struct offdata;
%}
INITIALIZE
%{
char tmp[CHAR_BUF_LENGTH];
strcpy(Vars.compcurname, NAME_CURRENT_COMP);
if (options != NULL)
strncpy(Vars.option, options, CHAR_BUF_LENGTH);
else {
strcpy(Vars.option, "x y");
printf("Monitor_nD: %s has no option specified. Setting to PSD ('x y') monitor.\n", NAME_CURRENT_COMP);
}
Vars.compcurpos = POS_A_CURRENT_COMP;
if (strstr(Vars.option, "source"))
strcat(Vars.option, " list, x y z vx vy vz t sx sy sz ");
if (bins) { sprintf(tmp, " all bins=%ld ", (long)bins); strcat(Vars.option, tmp); }
if (min > -FLT_MAX && max < FLT_MAX) { sprintf(tmp, " all limits=[%g %g]", min, max); strcat(Vars.option, tmp); }
else if (min > -FLT_MAX) { sprintf(tmp, " all min=%g", min); strcat(Vars.option, tmp); }
else if (max < FLT_MAX) { sprintf(tmp, " all max=%g", max); strcat(Vars.option, tmp); }
/* transfer, "zero", and check username- and user variable strings to Vars struct*/
strncpy(Vars.UserName1,
username1 && strlen(username1) && strcmp(username1, "0") && strcmp(username1, "NULL") ?
username1 : "", 128);
strncpy(Vars.UserName2,
username2 && strlen(username2) && strcmp(username2, "0") && strcmp(username2, "NULL") ?
username2 : "", 128);
strncpy(Vars.UserName3,
username3 && strlen(username3) && strcmp(username3, "0") && strcmp(username3, "NULL") ?
username3 : "", 128);
if(user1 && strlen(user1) && strcmp(user1, "0") && strcmp(user1, "NULL")){
strncpy(Vars.UserVariable1,user1,128);
int fail;_class_particle testparticle;
particle_getvar(&testparticle,Vars.UserVariable1,&fail);
if(fail){
fprintf(stderr,"Warning (%s): user1=%s is unknown. The signal will not be resolved - this is likely not what you intended.\n",NAME_CURRENT_COMP,user1);
}
}
if(user2 && strlen(user2) && strcmp(user2, "0") && strcmp(user2, "NULL")){
strncpy(Vars.UserVariable2,user2,128);
int fail;_class_particle testparticle;
particle_getvar(&testparticle,Vars.UserVariable2,&fail);
if(fail){
fprintf(stderr,"Warning (%s): user2=%s is unknown. The signal will not be resolved - this is likely not what you intended.\n",NAME_CURRENT_COMP,user2);
}
}
if(user3 && strlen(user3) && strcmp(user3, "0") && strcmp(user3, "NULL")){
strncpy(Vars.UserVariable3,user3,128);
int fail;_class_particle testparticle;
particle_getvar(&testparticle,Vars.UserVariable3,&fail);
if(fail){
fprintf(stderr,"Warning (%s): user3=%s is unknown. The signal will not be resolved - this is likely not what you intended.\n",NAME_CURRENT_COMP,user3);
}
}
/*sanitize parameters set for curved shapes*/
if(strstr(Vars.option,"cylinder") || strstr(Vars.option,"banana") || strstr(Vars.option,"sphere")){
/*this _is_ an explicit curved shape. Should have a radius. Inherit from xwidth or zdepth (diameters), x has precedence.*/
if (!radius){
if(xwidth){
radius=xwidth/2.0;
}else{
radius=zdepth/2.0;
}
}else{
xwidth=2*radius;
}
if(!yheight){
/*if not set - use the diameter as height for the curved object. This will likely only happen for spheres*/
yheight=2*radius;
}
}else if (radius) {
/*radius is set - this must be a curved shape. Infer shape from yheight, and set remaining values
(xwidth etc. They are used inside monitor_nd-lib.*/
xwidth = zdepth = 2*radius;
if (yheight){
/*a height is given (and no shape explitly set - assume cylinder*/
strcat(Vars.option, " banana");
}else {
strcat(Vars.option, " sphere");
yheight=2*radius;
}
}
int offflag=0;
if (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL")) {
#ifndef USE_OFF
fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
exit(-1);
#else
if (!off_init( geometry, xwidth, yheight, zdepth, 1, &offdata )) {
printf("Monitor_nD: %s could not initiate the OFF geometry %s. \n"
" Defaulting to normal Monitor dimensions.\n",
NAME_CURRENT_COMP, geometry);
strcpy(geometry, "");
} else {
offflag=1;
}
#endif
}
if (!radius && !xwidth && !yheight && !zdepth && !xmin && !xmax && !ymin && !ymax &&
!strstr(Vars.option, "previous") && (!geometry || !strlen(geometry)))
exit(printf("Monitor_nD: %s has no dimension specified. Aborting (radius, xwidth, yheight, zdepth, previous, geometry).\n", NAME_CURRENT_COMP));
Monitor_nD_Init(&DEFS, &Vars, xwidth, yheight, zdepth, xmin,xmax,ymin,ymax,zmin,zmax,offflag);
if (Vars.Flag_OFF) {
offdata.mantidflag=Vars.Flag_mantid;
offdata.mantidoffset=Vars.Coord_Min[Vars.Coord_Number-1];
}
if (filename && strlen(filename) && strcmp(filename,"NULL") && strcmp(filename,"0"))
strncpy(Vars.Mon_File, filename, 128);
/* check if user given filename with ext will be used more than once */
if ( ((Vars.Flag_Multiple && Vars.Coord_Number > 1) || Vars.Flag_List) && strchr(Vars.Mon_File,'.') )
{ char *XY; XY = strrchr(Vars.Mon_File,'.'); *XY='_'; }
if (restore_neutron) Vars.Flag_parallel=1;
detector.m = 0;
#ifdef USE_MPI
MPI_MASTER(
if (strstr(Vars.option, "auto") && mpi_node_count > 1)
printf("Monitor_nD: %s is using automatic limits option 'auto' together with MPI.\n"
"WARNING this may create incorrect distributions (but integrated flux will be right).\n", NAME_CURRENT_COMP);
);
#else
#ifdef OPENACC
if (strstr(Vars.option, "auto"))
printf("Monitor_nD: %s is requesting automatic limits option 'auto' together with OpenACC.\n"
"WARNING this feature is NOT supported using OpenACC and has been disabled!\n", NAME_CURRENT_COMP);
#endif
#endif
%}
TRACE
%{
double transmit_he3=1.0;
double multiplier_capture=1.0;
double t0 = 0;
double t1 = 0;
int pp;
int intersect = 0;
char Flag_Restore = 0;
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
/* this is done automatically
STORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
*/
#ifdef USE_OFF
if (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL"))
{
/* determine intersections with object */
intersect = off_intersect_all(&t0, &t1, NULL, NULL,
x,y,z, vx, vy, vz, 0, 0, 0, &thread_offdata );
if (Vars.Flag_mantid) {
if(intersect) {
Vars.OFF_polyidx=thread_offdata.nextintersect;
} else {
Vars.OFF_polyidx=-1;
}
}
}
else
#endif
if ( (abs(Vars.Flag_Shape) == DEFS.SHAPE_SQUARE)
|| (abs(Vars.Flag_Shape) == DEFS.SHAPE_DISK) ) /* square xy or disk xy */
{
// propagate to xy plane and find intersection
// make sure the event is recoverable afterwards
t0 = t;
ALLOW_BACKPROP;
PROP_Z0;
if ( (t>=t0) && (z==0.0) ) // forward propagation to xy plane was successful
{
if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SQUARE)
{
// square xy
intersect = (x>=Vars.mxmin && x<=Vars.mxmax && y>=Vars.mymin && y<=Vars.mymax);
}
else
{
// disk xy
intersect = (SQR(x) + SQR(y)) <= SQR(Vars.Sphere_Radius);
}
}
else
{
intersect=0;
}
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) /* sphere */
{
intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius);
/* intersect = (intersect && t0 > 0); */
}
else if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA)) /* cylinder */
{
intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius, Vars.Cylinder_Height);
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) /* box */
{
intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz,
fabs(Vars.mxmax-Vars.mxmin), fabs(Vars.mymax-Vars.mymin), fabs(Vars.mzmax-Vars.mzmin));
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_PREVIOUS) /* previous comp */
{ intersect = 1; }
if (intersect)
{
if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND)
|| (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA)
|| (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL")) )
{
/* check if we have to remove the top/bottom with BANANA shape */
if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA) {
if (intersect == 1) { // Entered and left through sides
if (t0 < 0 && t1 > 0) {
t0 = t; /* neutron was already inside ! */
}
if (t1 < 0 && t0 > 0) { /* neutron exit before entering !! */
t1 = t;
}
/* t0 is now time of incoming intersection with the detection area */
if ((Vars.Flag_Shape < 0) && (t1 > 0)) {
PROP_DT(t1); /* t1 outgoing beam */
} else {
PROP_DT(t0); /* t0 incoming beam */
}
} else if (intersect == 3 || intersect == 5) { // Entered from top or bottom, left through side
if ((Vars.Flag_Shape < 0) && (t1 > 0)) {
PROP_DT(t1); /* t1 outgoing beam */
} else {
intersect=0;
Flag_Restore=1;
}
} else if (intersect == 9 || intersect == 17) { // Entered through side, left from top or bottom
if ((Vars.Flag_Shape < 0) && (t1 > 0)) {
intersect=0;
Flag_Restore=1;
} else {
PROP_DT(t0); /* t0 incoming beam */
}
} else if (intersect == 13 || intersect == 19) { // Went through top/bottom on entry and exit
intersect=0;
Flag_Restore=1;
} else {
printf("Cylinder_intersect returned unexpected value %i\n", intersect);
}
} else {
// All other shapes than the BANANA
if (t0 < 0 && t1 > 0)
t0 = t; /* neutron was already inside ! */
if (t1 < 0 && t0 > 0) /* neutron exit before entering !! */
t1 = t;
/* t0 is now time of incoming intersection with the detection area */
if ((Vars.Flag_Shape < 0) && (t1 > 0))
PROP_DT(t1); /* t1 outgoing beam */
else
PROP_DT(t0); /* t0 incoming beam */
}
/* Final test if we are on lid / bottom of banana/sphere */
if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA || abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) {
if (Vars.Cylinder_Height && fabs(y) >= Vars.Cylinder_Height/2 - FLT_EPSILON) {
intersect=0;
Flag_Restore=1;
}
}
}
}
if (intersect)
{
/* Now get the data to monitor: current or keep from PreMonitor */
/* if (Vars.Flag_UsePreMonitor != 1)*/
/* {*/
/* Vars.cp = p;*/
/* Vars.cx = x;*/
/* Vars.cvx = vx;*/
/* Vars.csx = sx;*/
/* Vars.cy = y;*/
/* Vars.cvy = vy;*/
/* Vars.csy = sy;*/
/* Vars.cz = z;*/
/* Vars.cvz = vz;*/
/* Vars.csz = sz;*/
/* Vars.ct = t;*/
/* }*/
if ((Vars.He3_pressure > 0) && (t1 != t0) && ((abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX)))
{
transmit_he3 = exp(-7.417*Vars.He3_pressure*fabs(t1-t0)*2*PI*K2V);
/* will monitor the absorbed part */
p = p * (1-transmit_he3);
}
if (Vars.Flag_capture)
{
multiplier_capture = V2K*sqrt(vx*vx+vy*vy+vz*vz);
if (multiplier_capture != 0) multiplier_capture = 2*PI/multiplier_capture; /* lambda. lambda(2200 m/2) = 1.7985 Angs */
p = p * multiplier_capture/1.7985;
}
pp = Monitor_nD_Trace(&DEFS, &Vars, _particle);
if (pp==0.0)
{
ABSORB;
}
else if(pp==1)
{
SCATTER;
}
/*set weight to undetected part if capture and/or he3_pressure*/
if (Vars.He3_pressure > 0){
/* after monitor, only remains 1-p_detect */
p = p * transmit_he3/(1.0-transmit_he3);
}
if (Vars.Flag_capture){
p = p / multiplier_capture*1.7985;
}
if (Vars.Flag_parallel) /* back to neutron state before detection */
Flag_Restore = 1;
} /* end if intersection */
else {
if (Vars.Flag_Absorb && !Vars.Flag_parallel)
{
// restore neutron ray before absorbing for correct mcdisplay
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
ABSORB;
}
else Flag_Restore = 1; /* no intersection, back to previous state */
}
if (Flag_Restore)
{
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
}
%}
SAVE
%{
if (!nowritefile) {
/* save results, but do not free pointers */
detector = Monitor_nD_Save(&DEFS, &Vars);
}
%}
FINALLY
%{
/* free pointers */
Monitor_nD_Finally(&DEFS, &Vars);
%}
MCDISPLAY
%{
if (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL"))
{
off_display(offdata);
} else {
Monitor_nD_McDisplay(&DEFS, &Vars);
}
%}
END
|