1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/*******************************************************************************
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Res_monitor
*
* %I
* Written by: Kristian Nielsen
* Date: 1999
* Origin: Risoe
* Modified by: EF, 16th Apr 2003: imported from Monitor_nD to enable many shapes
* Modified by: T. Weber, Nov 2020: a) added live calculations; b) updated for McStas 3 / OpenACC
*
* Monitor for resolution calculations
*
* %D
* A single detector/monitor, used together with the Res_sample component to
* compute instrument resolution functions. Outputs a list of neutron
* scattering events in the sample along with their intensities in the
* detector. The output file may be analyzed with the mcresplot front-end.
*
* Example: Res_monitor(filename="Output.res", res_sample_comp=RSample, xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1)
*
* Setting the monitor geometry.
* The optional parameter 'options' may be set as a string with the
* following keywords. Default is rectangular ('square'):
* box Box of size xwidth, yheight, zdepth
* cylinder To get a cylindrical monitor (diameter is xwidth, height is yheight).
* banana Same as cylinder, without top/bottom, on restricted angular area
* disk Disk flat xy monitor. diameter is xwidth.
* sphrere To get a spherical monitor (e.g. a 4PI) (diameter is xwidth).
* square Square flat xy monitor (xwidth, yheight)
*
* %P
* INPUT PARAMETERS:
*
* xmin: [m] Lower x bound of detector opening
* xmax: [m] Upper x bound of detector opening
* ymin: [m] Lower y bound of detector opening
* ymax: [m] Upper y bound of detector opening
* zmin: [m] Lower z bound of detector opening
* zmax: [m] Upper z bound of detector opening
* filename: [string] Name of output file. If unset, use automatic name
* res_sample_comp: [no quotes] Name of Res_sample component in the instrument definition
* bufsize: [1] Number of events to store. Use 0 to store all
*
* OPTIONAL PARAMETERS (derived from Monitor_nD)
*
* xwidth: [m] Width/diameter of detector
* yheight: [m] Height of detector
* zdepth: [m] Thichness of detector
* radius: [m] Radius of sphere/cylinder monitor
* options: [str] String that specifies the geometry of the monitor
* restore_neutron: [1] If set, the monitor does not influence the neutron state
* live_calc: [1] If set, the monitor directly outputs the resolution matrix
*
* CALCULATED PARAMETERS:
*
* DEFS: [struct] structure containing Monitor_nD Defines
* Vars: [struct] structure containing Monitor_nD variables
* buffer_index: [long] number of recorded events
*
* %E
*******************************************************************************/
DEFINE COMPONENT Res_monitor
SETTING PARAMETERS (string res_sample_comp,
string filename=0, string options=0, xwidth=.1, yheight=.1, zdepth=0, radius=0,
xmin=0, xmax=0, ymin=0, ymax=0, zmin=0, zmax=0, bufsize=0, int restore_neutron=0, int live_calc=1)
/* these are protected C variables */
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE %{
%include "monitor_nd-lib"
%include "cov-lib"
%}
DECLARE%{
MonitornD_Defines_type DEFS;
MonitornD_Variables_type Vars;
long buffer_index;
tl2_list_type *reso_events;
tl2_list_type *reso_probabilities;
char res_pi_var[20];
char res_ki_x_var[20];
char res_ki_y_var[20];
char res_ki_z_var[20];
char res_kf_x_var[20];
char res_kf_y_var[20];
char res_kf_z_var[20];
char res_rx_var[20];
char res_ry_var[20];
char res_rz_var[20];
%}
INITIALIZE %{
// Use instance name for monitor output if no input was given
if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
buffer_index = 0;
reso_events = 0;
reso_probabilities = 0;
if(live_calc) {
reso_events = tl2_lst_create(0);
reso_probabilities = tl2_lst_create(0);
}
int i;
char tmp[1024];
strcpy(Vars.compcurname, NAME_CURRENT_COMP);
if (options != NULL)
strncpy(tmp, options, 1024);
else
strcpy(tmp, "");
if (strstr(tmp, "list"))
exit(fprintf(stderr, "Res_monitor: %s: Error: Only use geometry keywords (remove list from 'option').\n", NAME_CURRENT_COMP));
if (!bufsize)
sprintf(Vars.option, "%s borders list all, ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8 ud9 ud10", tmp);
else
sprintf(Vars.option, "%s borders list=%f, ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8 ud9 ud10", tmp, bufsize);
if (radius) xwidth = 2*radius;
Monitor_nD_Init(&DEFS, &Vars, xwidth, yheight, zdepth, xmin, xmax, ymin, ymax, zmin, zmax, 0);
Vars.Coord_Type[0] = DEFS.COORD_USERDOUBLE0; /* otherwise p is always the first variable */
if (Vars.Coord_Number != 10)
exit(fprintf(stderr,"Res_monitor: %s: Error: Invalid number of variables to monitor (%li).\n", NAME_CURRENT_COMP, Vars.Coord_Number+1));
/* set the labels */
/* we have to record ki_x ki_y ki_z kf_x kf_y kf_z x y z p_i p_f */
int idx = 0;
strcpy(tmp,"ki_x"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"ki_y"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"ki_z"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"kf_x"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"kf_y"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"kf_z"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"x"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"y"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"z"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"p_i"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
strcpy(tmp,"p_f"); strcpy(Vars.Coord_Label[idx], tmp); strcpy(Vars.Coord_Var[idx++], tmp);
if (filename != NULL)
strncpy(Vars.Mon_File, filename, 128);
/* Initialize uservar strings */
int *index_ptr=COMP_GETPAR3(Res_sample, res_sample_comp, compindex);
int index = *index_ptr;
sprintf(res_pi_var,"res_pi_%i",index);
sprintf(res_ki_x_var,"res_ki_x_%i",index);
sprintf(res_ki_y_var,"res_ki_y_%i",index);
sprintf(res_ki_z_var,"res_ki_z_%i",index);
sprintf(res_kf_x_var,"res_kf_x_%i",index);
sprintf(res_kf_y_var,"res_kf_y_%i",index);
sprintf(res_kf_z_var,"res_kf_z_%i",index);
sprintf(res_rx_var,"res_rx_%i",index);
sprintf(res_ry_var,"res_ry_%i",index);
sprintf(res_rz_var,"res_rz_%i",index);
%}
TRACE %{
double t0 = 0;
double t1 = 0;
int intersect = 0;
if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SQUARE) /* square xy */
{
PROP_Z0;
intersect = (x>=Vars.mxmin && x<=Vars.mxmax && y>=Vars.mymin && y<=Vars.mymax);
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_DISK) /* disk xy */
{
PROP_Z0;
intersect = ((x*x + y*y) <= Vars.Sphere_Radius*Vars.Sphere_Radius);
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) /* sphere */
{
intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius);
/* intersect = (intersect && t0 > 0); */
}
else if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA)) /* cylinder */
{
intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius, Vars.Cylinder_Height);
if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA) && (intersect != 1)) intersect = 0; /* remove top/bottom for banana */
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) /* box */
{
intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, fabs(Vars.mxmax-Vars.mxmin), fabs(Vars.mymax-Vars.mymin), fabs(Vars.mzmax-Vars.mzmin));
}
if (intersect)
{
if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) ||
(abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) ||
(abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) ||
(abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA))
{
if (t0 < 0 && t1 > 0)
t0 = t; /* neutron was already inside ! */
if (t1 < 0 && t0 > 0) /* neutron exit before entering !! */
t1 = t;
/* t0 is now time of incoming intersection with the sphere. */
if ((Vars.Flag_Shape < 0) && (t1 > 0))
PROP_DT(t1); /* t1 outgoing beam */
else
PROP_DT(t0); /* t0 incoming beam */
}
/* Now fetch data from the Res_sample. */
if(p && (!bufsize || buffer_index<bufsize))
{
/* old behaviour not supported by openacc:
struct Res_sample_struct *s =
(struct Res_sample_struct *)(COMP_GETPAR3(Res_sample, res_sample_comp, res_struct));*/
if(particle_getvar(_particle,res_pi_var,NULL))
{
/* ki */
Vars.UserDoubles[0] = particle_getvar(_particle,res_ki_x_var,NULL);
Vars.UserDoubles[1] = particle_getvar(_particle,res_ki_y_var,NULL);
Vars.UserDoubles[2] = particle_getvar(_particle,res_ki_z_var,NULL);
/* kf */
Vars.UserDoubles[3] = particle_getvar(_particle,res_kf_x_var,NULL);
Vars.UserDoubles[4] = particle_getvar(_particle,res_kf_y_var,NULL);
Vars.UserDoubles[5] = particle_getvar(_particle,res_kf_z_var,NULL);
/* pos */
Vars.UserDoubles[6] = particle_getvar(_particle,res_rx_var,NULL);
Vars.UserDoubles[7] = particle_getvar(_particle,res_ry_var,NULL);
Vars.UserDoubles[8] = particle_getvar(_particle,res_rz_var,NULL);
/* pi and pf */
Vars.UserDoubles[9] = particle_getvar(_particle,res_pi_var,NULL);
Vars.UserDoubles[10] = p/particle_getvar(_particle,res_pi_var,NULL);
Monitor_nD_Trace(&DEFS, &Vars, _particle);
/* live calculation */
if(live_calc) {
double *reso_event = (double*)malloc(4 * sizeof(double));
reso_event[0] = Vars.UserDoubles[0] - Vars.UserDoubles[3];
reso_event[1] = Vars.UserDoubles[1] - Vars.UserDoubles[4];
reso_event[2] = Vars.UserDoubles[2] - Vars.UserDoubles[5];
reso_event[3] = tl2_k_to_E(Vars.UserDoubles[0], Vars.UserDoubles[1], Vars.UserDoubles[2],
Vars.UserDoubles[3], Vars.UserDoubles[4], Vars.UserDoubles[5]);
double *reso_prob = (double*)malloc(sizeof(double));
*reso_prob = p;
tl2_lst_append(reso_events, reso_event);
tl2_lst_append(reso_probabilities, reso_prob);
}
}
SCATTER;
} /* if p */
} /* end if intersection */
if (restore_neutron) {
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
}
%}
SAVE %{
/* save results, but do not free pointers */
Monitor_nD_Save(&DEFS, &Vars);
/* live calculation */
if(live_calc) {
double cov[4*4], reso[4*4];
if(tl2_reso(reso_events->next, reso_probabilities->next, cov, reso)) {
printf("Resolution matrix:"
"\n\t%12.4e %12.4e %12.4e %12.4e"
"\n\t%12.4e %12.4e %12.4e %12.4e"
"\n\t%12.4e %12.4e %12.4e %12.4e"
"\n\t%12.4e %12.4e %12.4e %12.4e\n",
reso[0], reso[1], reso[2], reso[3],
reso[4], reso[5], reso[6], reso[7],
reso[8], reso[9], reso[10], reso[11],
reso[12], reso[13], reso[14], reso[15]);
}
else {
printf("Error: Resolution matrix could not be calculated.");
}
}
%}
FINALLY %{
/* free pointers */
Monitor_nD_Finally(&DEFS, &Vars);
tl2_lst_free(reso_events);
tl2_lst_free(reso_probabilities);
%}
MCDISPLAY %{
Monitor_nD_McDisplay(&DEFS, &Vars);
%}
END
|