1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Sqq_w_monitor
*
* %I
* Written by: Peter Willendrup
* Date: June-July, 2018
* Origin: DTU
*
* Monitor outputting a series of energy-planes in a subset of reciprocal space, spanned by
* scattering vectors qa(x,z) and qb(x,z) in the component x-z plane.
*
* %D
*
* Cylindrical monitor on the x-z plane outputting a series of energy-planes in a subset of reciprocal
* space, spanned by scattering vectors qa(x,z) and qb(x,z).
*
* The radius and yheight parameters are not used for propagation, but only to define the outgoing divergence
* limit considered when estimating k_f
*
* The assumption is that the "current" neutron represents the final state, whereas the incoming state
* is found by restoring the neutron state "index" components earlier.
*
* Example: Sqq_w_monitor(filename="output",radius=1, yheight=0.05, Emin=0,Emax=5,nE=11,nqa=100,nqb=100,qamin=1,qamax=10,qbmin=1qbmax=10, vix="vix", viy="viy", viz="viz")
* AT (0,0,0) RELATIVE sample
*
* %P
* INPUT PARAMETERS:
*
* radius: [m] Cylinder radius
* yheight: [m] Cylinder height
* qax: [1] x-component of 1st q-vector
* qaz: [1] z-component of 1st q-vector
* qbx: [1] x-component of 2nd q-vector
* qbz: [1] z-component of 2nd q-vector
* qamin: [AA^-1] Defines interval (qamin,qamax) where monitor measures in nqa bins
* qamax: [AA^-1] Defines interval (qamin,qamax) where monitor measures in nqa bins
* qbmin: [AA^-1] Defines interval (qbmin,qbmax) where monitor measures in nqb bins
* qbmax: [AA^-1] Defines interval (qbmin,qbmax) where monitor measures in nqb bins
* nqa: [int] Number of bins along qa direction
* nqb: [int] Number of bins along qb direction
* Emin: [meV] Defines the energy-transfer [Emin,Emax] window to monitor in nE bins
* Emax: [meV] Defines the energy-transfer [Emax,Emax] window to monitor in nE bins
* nE: [int] Number of energy slices
* vix: [string] Points to instrument-level USERVAR for reading an earlier x-velocity
* viy: [string] Points to instrument-level USERVAR for reading an earlier y-velocity
* viz: [string] Points to instrument-level USERVAR for reading an earlier z-velocity
* filename: [string] Base filename to use, nE+1 files will be output
* nowritefile: [1] If set, monitor will skip writing to disk
* nosum: [1] If set, monitor will skip writing the energy-summed array to disk
*
* CALCULATED PARAMETERS:
*
* M_N: [] 3D array of neutron counts
* M_p: [] 3D array of neutron weight counts
* N_p2: [] 3D array of second moments
* M_Ns: [] 2D array of neutron counts
* M_ps: [] 2D array of neutron weight counts
* N_p2s: [] 2D array of second moments
*
* %E
*******************************************************************************/
DEFINE COMPONENT Sqq_w_monitor
SETTING PARAMETERS (radius=1, yheight=0.05, qax=1,qaz=0,qbx=0,qbz=1,qamin=0,qamax=2,qbmin=0,qbmax=2,Emin=0,Emax=5,int nqa=90, int nqb=90, int nE=10, string filename=0, int nowritefile=0, int nosum=0, string vix="", string viy="", string viz="")
DECLARE
%{
DArray3d M_N;
DArray3d M_p;
DArray3d M_p2;
DArray2d M_Ns;
DArray2d M_ps;
DArray2d M_p2s;
double dE;
%}
INITIALIZE
%{
/* Make checks for limits on qa, qb, w grid */
M_N=create_darr3d(nE,nqa,nqb);
M_p=create_darr3d(nE,nqa,nqb);
M_p2=create_darr3d(nE,nqa,nqb);
M_Ns=create_darr2d(nqa,nqb);
M_ps=create_darr2d(nqa,nqb);
M_p2s=create_darr2d(nqa,nqb);
dE=(Emax-Emin)/(1.0*nE-1);
// Use instance name for monitor output if no input was given
if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}
TRACE
%{
int i,j,k;
//double rx,ry,rz,rvx,rvy,rvz,rt,rsx,rsy,rsz,rp;
double rvx,rvy,rvz;
double Ei,Ef,E,Ki,Kf;
double qx,qy,qz;
double qqa, qqb;
double kix,kiy,kiz;
double kfx,kfy,kfz;
double t0,t1;
double nx,ny,nz;
nx=vx;
ny=vy;
nz=vz;
NORM(nx,ny,nz);
double v_div=scalar_prod(nx, ny, nz, 0, 1, 0);
/* Initial check to see if this neutron should be counted or not... */
if (fabs(v_div)<=yheight/radius && cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight)) {
if(t0<0 && t1>0) {
/* This one hits our cylindrical band, arriving from inside */
int fail;
rvx = particle_getvar(_particle,vix,&fail); if(fail) rvx=0;
rvy = particle_getvar(_particle,viy,&fail); if(fail) rvy=0;
rvz = particle_getvar(_particle,viz,&fail); if(fail) rvz=0;
/* Calculate energy transfer */
Ei = VS2E*(rvx*rvx + rvy*rvy + rvz*rvz);
Ef = VS2E*( vx*vx + vy*vy + vz*vz);
E=Ei-Ef;
/* calculate k vectors and momentum transfer*/
kix=rvx;
kiy=rvy;
kiz=rvz;
kfx=vx;
kfy=vy;
kfz=vz;
NORM(kix, kiy, kiz);
NORM(kfx, kfy, kfz);
/* K-vector lengths */
Ki=V2K*sqrt((rvx*rvx)+(rvy*rvy)+(rvz*rvz));
Kf=V2K*sqrt((vx*vx)+(vy*vy)+(vz*vz));
kix=Ki*kix; kiy=Ki*kiy; kiz=Ki*kiz;
kfx=Kf*kfx; kfy=Kf*kfy; kfz=Kf*kfz;
qx=kix-kfx;
qy=kiy-kfy;
qz=kiz-kfz;
/* Calculate projections along qa and qb */
qqa = qx*qax + qz*qaz;
qqb = qx*qbx + qz*qbz;
/* Check if we are within the selected q/e range */
if (qqa <= qamax && qqa >=qamin && qqb <=qbmax && qqb>=qbmin && E<= Emax && E>=Emin) {
i = floor((qqa - qamin)*nqa/(qamax - qamin));
j = floor((qqb - qbmin)*nqb/(qbmax - qbmin));
k = floor((E - Emin)*nE/(Emax - Emin));
double p2 = p*p;
#pragma acc atomic
M_N[k][i][j] = M_N[k][i][j] + 1;
#pragma acc atomic
M_p[k][i][j] = M_p[k][i][j] + p;
#pragma acc atomic
M_p2[k][i][j] = M_p2[k][i][j] + p2;
#pragma acc atomic
M_Ns[i][j] = M_Ns[i][j] + 1 ;
#pragma acc atomic
M_ps[i][j] = M_ps[i][j] + p;
#pragma acc atomic
M_p2s[i][j] = M_p2s[i][j] + p2;
SCATTER;
}
}
}
/* Stuff that don't hit cylinder properly is disregarded */
%}
SAVE
%{
if (!nowritefile) {
int kk,ll;
char ff[256];
char tt[256];
if (!nosum) {
sprintf(ff, "%s_Sum",filename);
DETECTOR_OUT_2D(
"qa vs qb monitor E Sum",
"qa [AA^-1]",
"qb [AA^-1]",
qamin, qamax, qbmin, qbmax,
nqa, nqb,
&M_Ns[0][0],&M_ps[0][0],&M_p2s[0][0],
ff);
}
for (kk=0; kk<nE; kk++) {
sprintf(ff, "%s_%i",filename,kk);
sprintf(tt, "qa vs qb monitor E slice %i ~ %g meV",kk,dE*kk+Emin);
DETECTOR_OUT_2D(
tt,
"qa [AA^-1]",
"qb [AA^-1]",
qamin, qamax, qbmin, qbmax,
nqa, nqb,
&M_N[kk][0][0],&M_p[kk][0][0],&M_p2[kk][0][0],
ff);
}
}
%}
FINALLY %{
destroy_darr3d(M_N);
destroy_darr3d(M_p);
destroy_darr3d(M_p2);
destroy_darr2d(M_Ns);
destroy_darr2d(M_ps);
destroy_darr2d(M_p2s);
%}
MCDISPLAY
%{
circle("xz", 0, -(yheight/2.0), 0, radius );
circle("xz", 0, (yheight/2.0), 0, radius );
%}
END
|