1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: DiskChopper
*
* %I
* Written by: Peter Willendrup
* Date: March 9 2006
* Origin: Risoe
* Based on Chopper (Philipp Bernhardt), Jitter and beamstop from work by
* Kaspar Hewitt Klenoe (jan 2006), adjustments by Rob Bewey (march 2006)
*
* %D
* Models a disc chopper with nslit identical slits, which are symmetrically distributed
* on the disc. At time t=0, the centre of the first slit opening will be situated at the
* vertical axis when phase=0, assuming the chopper centre of rotation is placed <b>BELOW</b> the beam axis.
* If you want to place the chopper <b>ABOVE</b> the beam axis, please use a 180 degree rotation around Z
* (otherwise unexpected beam splitting can occur in combination with the isfirst=1 setting, see
* <a href="https://github.com/McStasMcXtrace/McCode/issues/650">related bug on GitHub</a>)
*
* For more complicated gemometries, see component manual example of DiskChopper GROUPing.
*
* If the chopper is the 1st chopper of a continuous source instrument, you should use the "isfirst" parameter.
* This parameter SETS the neutron time to match the passage of the chooper slit(s), taking into account the
* chopper timing and phasing (thus conserving your simulated statistics).
*
* The isfirst parameter is ONLY relevant for use in continuous source settings.
*
* Example: DiskChopper(radius=0.2, theta_0=10, nu=41.7, nslit=3, delay=0, isfirst=1) First chopper
* DiskChopper(radius=0.2, theta_0=10, nu=41.7, nslit=3, delay=0, isfirst=0)
*
* NOTA BENE wrt. GROUPing and isfirst:
* When setting up a GROUP of DiskChoppers for a steady-state / reactor source, you will need
* to set up
* 1) An initial chopper with isfirst=1, NOT part of the GROUP - and using a "big" chopper opening
* that spans the full angular extent of the openings of the subsequent GROUP
* 2) Add your DiskChopper GROUP setting isfirst=0
*
* %P
* INPUT PARAMETERS:
*
* theta_0: [deg] Angular width of the slits.
* yheight: [m] Slit height (if = 0, equal to radius). Auto centering of beam at half height.
* radius: [m] Radius of the disc
* nu: [Hz] Frequency of the Chopper, omega=2*PI*nu (algebraic sign defines the direction of rotation)
* nslit: [1] Number of slits, regularly arranged around the disk
*
* Optional parameters:
* isfirst: [0/1] Set it to 1 for the first chopper position in a cw source (it then spreads the neutron time distribution)
* n_pulse: [1] Number of pulses (Only if isfirst)
* jitter: [s] Jitter in the time phase
* abs_out: [0/1] Absorb neutrons hitting outside of chopper radius?
* delay: [s] Time 'delay'
* phase: [deg] Angular 'delay' (overrides delay)
* xwidth: [m] Horizontal slit width opening at beam center
* verbose: [1] Set to 1 to display Disk chopper configuration
*
* %E
*******************************************************************************/
DEFINE COMPONENT DiskChopper
SETTING PARAMETERS (theta_0=0, radius=0.5, yheight, nu, nslit=3, jitter=0, delay=0, isfirst=0, n_pulse=1, abs_out=1, phase=0, xwidth=0, verbose=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
double Tg;
double To;
double delta_y;
double height;
double omega;
%}
INITIALIZE
%{
/* If slit height 'unset', assume full opening */
if (yheight == 0) {
height=radius;
} else {
height=yheight;
}
delta_y = radius-height/2; /* radius at beam center */
omega=2.0*PI*nu; /* rad/s */
if (xwidth && !theta_0 && radius) theta_0 = 2*RAD2DEG*asin(xwidth/2/delta_y);
if (nslit<=0 || theta_0 <= 0 || radius <=0)
{ fprintf(stderr,"DiskChopper: %s: nslit, theta_0 and radius must be > 0\n", NAME_CURRENT_COMP);
exit(-1); }
if (nslit*theta_0 >= 360)
{ fprintf(stderr,"DiskChopper: %s: nslit * theta_0 exceeds 2PI\n", NAME_CURRENT_COMP);
exit(-1); }
if (yheight && yheight>radius) {
fprintf(stderr,"DiskChopper: %s: yheight must be < radius\n", NAME_CURRENT_COMP);
exit(-1); }
if (isfirst && n_pulse <=0)
{ fprintf(stderr,"DiskChopper: %s: wrong First chopper pulse number (n_pulse=%g)\n", NAME_CURRENT_COMP, n_pulse);
exit(-1); }
if (!omega) {
fprintf(stderr,"DiskChopper: %s WARNING: chopper frequency is 0!\n", NAME_CURRENT_COMP);
omega = 1e-15; /* We should actually use machine epsilon here... */
}
if (!abs_out) {
fprintf(stderr,"DiskChopper: %s WARNING: chopper will NOT absorb neutrons outside radius %g [m]\n", NAME_CURRENT_COMP, radius);
}
theta_0*=DEG2RAD;
/* Calulate delay from phase and vice versa */
if (phase) {
if (delay) {
fprintf(stderr,"DiskChopper: %s WARNING: delay AND phase specified. Using phase setting\n", NAME_CURRENT_COMP);
}
phase*=DEG2RAD;
/* 'Delay' should always be a delay, taking rotation direction into account: */
delay=phase/fabs(omega);
} else {
phase=delay*omega; /* rad */
}
/* Time from opening of slit to next opening of slit */
Tg=2.0*PI/fabs(omega)/nslit;
/* How long can neutrons pass the Chopper at a single point */
To=theta_0/fabs(omega);
if (!xwidth) xwidth=2*delta_y*sin(theta_0/2);
if (verbose && nu) {
printf("DiskChopper: %s: frequency=%g [Hz] %g [rpm], time frame=%g [s] phase=%g [deg]\n",
NAME_CURRENT_COMP, nu, nu*60, Tg, phase*RAD2DEG);
printf(" %g slits, angle=%g [deg] height=%g [m], width=%g [m] at radius=%g [m]\n",
nslit, theta_0*RAD2DEG, height, xwidth, delta_y);
}
%}
TRACE
%{
double toff;
double yprime;
PROP_Z0;
yprime = y+delta_y;
/* Is neutron outside the vertical slit range and should we absorb? */
if (abs_out && (x*x+yprime*yprime)>radius*radius) {
ABSORB;
}
/* Does neutron hit inner solid part of chopper in case of yheight!=radius? */
if ((x*x+yprime*yprime)<(radius-height)*(radius-height)) {
ABSORB;
}
if (isfirst)
{
/* all events are put in the transmitted time frame */
t=atan2(x,yprime)/omega + To*randpm1()/2.0 + delay + (jitter ? jitter*randnorm():0) + (n_pulse > 1 ? floor(n_pulse*rand01())*Tg : 0);
/* correction: chopper slits transmission opening/full disk */
p *= nslit*theta_0/2.0/PI;
}
else
{
toff=fabs(t-atan2(x,yprime)/omega - delay - (jitter ? jitter*randnorm():0));
/* does neutron hit outside slit? */
if (fmod(toff+To/2.0,Tg)>To) ABSORB;
}
SCATTER;
%}
MCDISPLAY
%{
int j;
/* Arrays for storing geometry of slit/beamstop */
circle("xy", 0, -delta_y, 0, radius);
/* Drawing the slit(s) */
for (j=0; j<nslit; j++) {
/* Angular start/end of slit */
double tmin = j*(2.0*PI/nslit) - theta_0/2.0 + phase;
double tmax = tmin+theta_0;
/* Draw lines for each slit. */
line(
radius*sin(tmin), radius*cos(tmin)-delta_y, 0,
(radius-height)*sin(tmin), (radius-height)*cos(tmin)-delta_y, 0
);
line(
(radius-height)*sin(tmin), (radius-height)*cos(tmin)-delta_y, 0,
(radius-height)*sin(tmax), (radius-height)*cos(tmax)-delta_y, 0);
line(
(radius-height)*sin(tmax), (radius-height)*cos(tmax)-delta_y, 0,
radius*sin(tmax), radius*cos(tmax)-delta_y, 0);
}
%}
END
|