File: DiskChopper.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (209 lines) | stat: -rw-r--r-- 7,663 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: DiskChopper
*
* %I
* Written by: Peter Willendrup
* Date: March 9 2006
* Origin: Risoe
* Based on Chopper (Philipp Bernhardt), Jitter and beamstop from work by
* Kaspar Hewitt Klenoe (jan 2006), adjustments by Rob Bewey (march 2006)
*
* %D
* Models a disc chopper with nslit identical slits, which are symmetrically distributed
* on the disc. At time t=0, the centre of the first slit opening will be situated at the
* vertical axis when phase=0, assuming the chopper centre of rotation is placed <b>BELOW</b> the beam axis.
* If you want to place the chopper <b>ABOVE</b> the beam axis, please use a 180 degree rotation around Z 
* (otherwise unexpected beam splitting can occur in combination with the isfirst=1 setting, see
*  <a href="https://github.com/McStasMcXtrace/McCode/issues/650">related bug on GitHub</a>)
*
* For more complicated gemometries, see component manual example of DiskChopper GROUPing.
*
* If the chopper is the 1st chopper of a continuous source instrument, you should use the "isfirst" parameter.
* This parameter SETS the neutron time to match the passage of the chooper slit(s), taking into account the
* chopper timing and phasing (thus conserving your simulated statistics).
*
* The isfirst parameter is ONLY relevant for use in continuous source settings.
*
* Example: DiskChopper(radius=0.2, theta_0=10, nu=41.7, nslit=3, delay=0, isfirst=1) First chopper
*          DiskChopper(radius=0.2, theta_0=10, nu=41.7, nslit=3, delay=0, isfirst=0)
*
* NOTA BENE wrt. GROUPing and isfirst: 
* When setting up a GROUP of DiskChoppers for a steady-state / reactor source, you will need
* to set up
* 1) An initial chopper with isfirst=1, NOT part of the GROUP - and using a "big" chopper opening 
*    that spans the full angular extent of the openings of the subsequent GROUP
* 2) Add your DiskChopper GROUP setting isfirst=0
*
* %P
* INPUT PARAMETERS:
*
* theta_0: [deg]  Angular width of the slits.
* yheight: [m]    Slit height (if = 0, equal to radius). Auto centering of beam at half height.
* radius: [m]     Radius of the disc
* nu: [Hz]        Frequency of the Chopper, omega=2*PI*nu (algebraic sign defines the direction of rotation)
* nslit: [1]      Number of slits, regularly arranged around the disk
*
* Optional parameters:
* isfirst: [0/1]  Set it to 1 for the first chopper position in a cw source (it then spreads the neutron time distribution)
* n_pulse: [1]    Number of pulses (Only if isfirst)
* jitter: [s]     Jitter in the time phase
* abs_out: [0/1]  Absorb neutrons hitting outside of chopper radius?
* delay: [s]      Time 'delay'
* phase: [deg]    Angular 'delay' (overrides delay)
* xwidth: [m]     Horizontal slit width opening at beam center
* verbose: [1]    Set to 1 to display Disk chopper configuration
*
* %E
*******************************************************************************/

DEFINE COMPONENT DiskChopper



SETTING PARAMETERS (theta_0=0, radius=0.5, yheight, nu, nslit=3, jitter=0, delay=0, isfirst=0, n_pulse=1, abs_out=1, phase=0, xwidth=0, verbose=0)


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

DECLARE
%{
double Tg;
double To;
double delta_y;
double height;
double omega;
%}

INITIALIZE
%{
/* If slit height 'unset', assume full opening */
if (yheight == 0) {
        height=radius;
      } else {
        height=yheight;
      }
      delta_y = radius-height/2; /* radius at beam center */
      omega=2.0*PI*nu; /* rad/s */
      if (xwidth && !theta_0 && radius) theta_0 = 2*RAD2DEG*asin(xwidth/2/delta_y);

      if (nslit<=0 || theta_0 <= 0 || radius <=0)
      { fprintf(stderr,"DiskChopper: %s: nslit, theta_0 and radius must be > 0\n", NAME_CURRENT_COMP);
        exit(-1); }
      if (nslit*theta_0 >= 360)
      { fprintf(stderr,"DiskChopper: %s: nslit * theta_0 exceeds 2PI\n", NAME_CURRENT_COMP);
        exit(-1); }
      if (yheight && yheight>radius) {
        fprintf(stderr,"DiskChopper: %s: yheight must be < radius\n", NAME_CURRENT_COMP);
        exit(-1); }
      if (isfirst && n_pulse <=0)
      { fprintf(stderr,"DiskChopper: %s: wrong First chopper pulse number (n_pulse=%g)\n", NAME_CURRENT_COMP, n_pulse);
        exit(-1); }
      if (!omega) {
        fprintf(stderr,"DiskChopper: %s WARNING: chopper frequency is 0!\n", NAME_CURRENT_COMP);
        omega = 1e-15; /* We should actually use machine epsilon here... */
      }
      if (!abs_out) {
        fprintf(stderr,"DiskChopper: %s WARNING: chopper will NOT absorb neutrons outside radius %g [m]\n", NAME_CURRENT_COMP, radius);
      }

      theta_0*=DEG2RAD;


      /* Calulate delay from phase and vice versa */
      if (phase) {
        if (delay) {
          fprintf(stderr,"DiskChopper: %s WARNING: delay AND phase specified. Using phase setting\n", NAME_CURRENT_COMP);
        }
        phase*=DEG2RAD;
        /* 'Delay' should always be a delay, taking rotation direction into account: */
        delay=phase/fabs(omega);
      } else {
        phase=delay*omega;  /* rad */
      }

      /* Time from opening of slit to next opening of slit */
      Tg=2.0*PI/fabs(omega)/nslit;

      /* How long can neutrons pass the Chopper at a single point */
      To=theta_0/fabs(omega);

      if (!xwidth) xwidth=2*delta_y*sin(theta_0/2);

      if (verbose && nu) {
        printf("DiskChopper: %s: frequency=%g [Hz] %g [rpm], time frame=%g [s] phase=%g [deg]\n",
          NAME_CURRENT_COMP, nu, nu*60, Tg, phase*RAD2DEG);
        printf("             %g slits, angle=%g [deg] height=%g [m], width=%g [m] at radius=%g [m]\n",
          nslit, theta_0*RAD2DEG, height, xwidth, delta_y);
      }
%}

TRACE
%{
    double toff;
    double yprime;
    PROP_Z0;
    yprime = y+delta_y;

    /* Is neutron outside the vertical slit range and should we absorb? */
    if (abs_out && (x*x+yprime*yprime)>radius*radius) {
      ABSORB;
    }
    /* Does neutron hit inner solid part of chopper in case of yheight!=radius? */
    if ((x*x+yprime*yprime)<(radius-height)*(radius-height)) {
      ABSORB;
    }


    if (isfirst)
      {
        /* all events are put in the transmitted time frame */
        t=atan2(x,yprime)/omega + To*randpm1()/2.0 + delay + (jitter ? jitter*randnorm():0) + (n_pulse > 1 ? floor(n_pulse*rand01())*Tg : 0);
        /* correction: chopper slits transmission opening/full disk */
        p *= nslit*theta_0/2.0/PI;
      }
    else
      {
        toff=fabs(t-atan2(x,yprime)/omega - delay - (jitter ? jitter*randnorm():0));

        /* does neutron hit outside slit? */
        if (fmod(toff+To/2.0,Tg)>To) ABSORB;
      }
    SCATTER;

%}

MCDISPLAY
%{

  int j;
  /* Arrays for storing geometry of slit/beamstop */
  
  circle("xy", 0, -delta_y, 0, radius);

  /* Drawing the slit(s) */
  for (j=0; j<nslit; j++) {
    /* Angular start/end of slit */
    double tmin = j*(2.0*PI/nslit) - theta_0/2.0 + phase;
    double tmax = tmin+theta_0;
    /* Draw lines for each slit. */

    line(
      radius*sin(tmin),          radius*cos(tmin)-delta_y,          0,
      (radius-height)*sin(tmin), (radius-height)*cos(tmin)-delta_y, 0
      );
    line(
      (radius-height)*sin(tmin), (radius-height)*cos(tmin)-delta_y, 0,
      (radius-height)*sin(tmax), (radius-height)*cos(tmax)-delta_y, 0);
    line(
      (radius-height)*sin(tmax), (radius-height)*cos(tmax)-delta_y, 0,
      radius*sin(tmax),          radius*cos(tmax)-delta_y,          0);
  }
%}

END