1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: FermiChopper.
*
* %Identification
*
* Written by: M. Poehlmann, C. Carbogno, H. Schober, E. Farhi
* Date: May 2002
* Origin: ILL Grenoble / TU Muenchen
* Modified by: K.Lieutenant, June 2005: added phase parameter. Comp validation.
* Modified by: EF, Nov 2005: completely rewrote comp.
* Modified by: EF, Oct 2008: fix chopper orientation
* Modified by: EF, Mar 2009: improved intersection algorithm
*
* Fermi Chopper with rotating frame.
*
* %D
* Models a fermi chopper with optional supermirror coated blades
* supermirror facilities may be disabled by setting m = 0, R0=0
* Slit packages are straight. Chopper slits are separated by an infinitely
* thin absorbing material. The effective transmission (resulting from fraction
* of the transparent material and its transmission) may be specified.
* The chopper slit package width may be specified through the total width 'xwidth'
* of the full package or the width 'w' of each single slit. The other parameter
* is calculated by: xwidth = nslit*w. The slit package may be made curved and use
* super-mirror coating.
*
* Example:
* FermiChopper(phase=-50.0, radius=0.04, nu=100, yheight=0.08, w=0.00022475, nslit=200.0, R0=0.0, Qc=0.02176, alpha=2.33, m=0.0, length=0.012, eff=0.95)
*
* %VALIDATION
* Apr 2005: extensive external test, most problems solved (cf. 'Bugs')
* Validated by: K. Lieutenant, E. Farhi
*
* limitations:
* no absorbing blade width used
*
* %Parameters
* INPUT PARAMETERS:
*
* Geometrical chopper constants:
* radius: [m] chopper cylinder radius
* nslit: [1] number of chopper slits
* length: [m] channel length of the Fermi chopper
* w: [m] width of one chopper slit
* xwidth: [m] optional total width of slit package
* yheight: [m] height of slit package
* nu: [Hz] chopper frequency. Omega=2*PI*nu in rad/s, nu*60 in rpm. Positive value corresponds to a counter-clockwise rotation around y.
* eff: [1] efficiency = transmission x fraction of transparent material
* verbose: [1] set to 1,2 or 3 gives debugging information
* curvature: [m-1] Curvature of slits (1/radius of curvature).
*
* Supermirror constants:
* m: [1] m-value of material. Zero means completely absorbing.
* alpha: [AA] slope of reflectivity
* Qc: [AA-1] critical scattering vector
* W: [AA-1] width of supermirror cut-off
* R0: [1] low-angle reflectivity
*
* Constants to reset time of flight:
* zero_time: [1] set time to zero: 0=no, 1=once per half cycle, 2=auto adjust phase
* phase: [deg] chopper phase at t=0
* delay: [s] sets phase so that transmision is centered on 'delay'
*
* CALCULATED PARAMETERS:
* FCVars : [] structure
*
* %L
* <a href="Vitess_ChopperFermi.html">Vitess_ChopperFermi</a> component by
* G. Zsigmond, imported from Vitess by K. Lieutenant.
*
* %End
*****************************************************************************/
/* NOTE:
* The initial component version (McStas version <= 1.12) was written
* with an inverted coordinate frame orientation. This corresponds
* to inverting the frequency and phase sign.
*/
DEFINE COMPONENT FermiChopper
SETTING PARAMETERS (phase=0, radius=0.04, nu=100,
w=0.00022475, nslit=200, R0=0.0,
Qc=0.02176, alpha=2.33, m=0.0, W=2e-3, length=0.012, eff=0.95,
zero_time=0, xwidth=0, verbose=0, yheight=0.08,
curvature=0,delay=0)
SHARE
%{
%include "ref-lib"
#ifndef FermiChopper_TimeAccuracy
#define FermiChopper_TimeAccuracy 1e-9
#define FermiChopper_MAXITER 100
/* Definition of internal variable structure: all counters */
struct FermiChopper_struct
{
double omega; /* chopper rotation */
double ph0; /* chopper rotation */
double t0; /* chopper rotation */
double C_slit; /* slit curvature radius in [m] */
double L_slit; /* slit package length [m] */
double sum_t;
double sum_v;
double sum_N;
double sum_N_pass;
/* events */
long absorb_alreadyinside;
long absorb_topbottom;
long absorb_cylentrance;
long absorb_sideentrance;
long absorb_notreachentrance;
long absorb_packentrance;
long absorb_slitcoating;
long warn_notreachslitwall;
long absorb_exitslitpack;
long absorb_maxiterations;
long absorb_wrongdirection;
long absorb_nocontrol;
long absorb_cylexit;
long warn_notreachslitoutput;
char compcurname[256];
};
/*****************************************************************************
* FC_zrot: returns Z' in rotating frame, from X,Z and t,omega,ph0
****************************************************************************/
#pragma acc routine seq
double FC_zrot(double X, double Z, double T, struct FermiChopper_struct FCs)
{
double omega =FCs.omega;
double ph0 =FCs.ph0;
return( Z*cos(omega*T+ph0)-X*sin(omega*T+ph0) );
}
/*****************************************************************************
* FC_xrot: returns X' in rotating frame, from X,Z and omega,t,ph0
* additional coordinate shift in case of curved slits
****************************************************************************/
#pragma acc routine seq
double FC_xrot(double X, double Z, double T, struct FermiChopper_struct FCs)
{
double omega =FCs.omega;
double ph0 =FCs.ph0;
double C_slit=FCs.C_slit;
double ret, tmp;
ret = X*cos(omega*T+ph0)+Z*sin(omega*T+ph0);
if (C_slit) {
tmp = fabs(FC_zrot(X, Z, T, FCs));
if (tmp < FCs.L_slit/2) {
tmp = (FCs.L_slit/2 - tmp)*C_slit;
ret += (1-sqrt(1-tmp*tmp))/C_slit;
}
}
return( ret );
}
/*****************************************************************************
* FC_xzrot_dt(x,z,vx,vz, t,dt, type='x' or 'z', FCs)
* returns X' or Z' in rotating frame, from X,Z and t,omega,ph0
* taking into account propagation with velocity during time dt
****************************************************************************/
#pragma acc routine seq
double FC_xzrot_dt(double x, double z, double vx, double vz,
double t, double dt, char type, struct FermiChopper_struct FCs)
{
if (dt) /* with propagation */
return( (type == 'x' ? FC_xrot(x+vx*dt, z+vz*dt, t+dt, FCs)
: FC_zrot(x+vx*dt, z+vz*dt, t+dt, FCs)) );
else /* without propagation */
return( (type == 'x' ? FC_xrot(x,z,t,FCs)
: FC_zrot(x,z,t,FCs)) );
}
/*****************************************************************************
* FC_xzbrent(x,z,vx,vz, t,dt, type='x' or 'z', d, FCs)
* solves X'=d and Z'=d with Brent algorithm in time interval [0, dt].
* Returns time within [0,dt], from NumRecip in C, chap 9, p360 (zbrent)
* ERRORS: return -1 not used
* -2 if exceed MAX iteration
* -3 no sign change in range
****************************************************************************/
#pragma acc routine seq
double FC_xzbrent(double x, double z, double vx, double vz,
double t, double dt,
char type, double d, struct FermiChopper_struct FCs)
{
int iter;
double a=0,b=dt;
double c,dd,e,min1,min2;
double tol=FermiChopper_TimeAccuracy;
double EPS=FermiChopper_TimeAccuracy;
double fa=FC_xzrot_dt(x,z,vx,vz, t,a, type, FCs) - d;
double fb=FC_xzrot_dt(x,z,vx,vz, t,b, type, FCs) - d;
double fc,p,q,r,s,tol1,xm;
if (fb*fa > 0.0) return -3;
fc=fb;
for (iter=1;iter<=FermiChopper_MAXITER;iter++) {
if (fb*fc > 0.0) {
c=a;
fc=fa;
e=dd=b-a;
}
if (fabs(fc) < fabs(fb)) {
a=b;
b=c;
c=a;
fa=fb;
fb=fc;
fc=fa;
}
tol1=2.0*EPS*fabs(b)+0.5*tol;
xm=0.5*(c-b);
if (fabs(xm) <= tol1 || fb == 0.0) return b;
if (fabs(e) >= tol1 && fabs(fa) > fabs(fb)) {
s=fb/fa;
if (a == c) {
p=2.0*xm*s;
q=1.0-s;
} else {
q=fa/fc;
r=fb/fc;
p=s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0));
q=(q-1.0)*(r-1.0)*(s-1.0);
}
if (p > 0.0) q = -q;
p=fabs(p);
min1=3.0*xm*q-fabs(tol1*q);
min2=fabs(e*q);
if (2.0*p < (min1 < min2 ? min1 : min2)) {
e=dd;
dd=p/q;
} else {
dd=xm;
e=dd;
}
} else {
dd=xm;
e=dd;
}
a=b;
fa=fb;
if (fabs(dd) > tol1)
b += dd;
else
b += (xm > 0.0 ? fabs(tol1) : -fabs(tol1));
fb=FC_xzrot_dt(x,z,vx,vz, t,b, type, FCs) - d;
}
return -2;
} /* FC_xzbrent */
/*****************************************************************************
* Wrappers to intersection algorithms
****************************************************************************/
#pragma acc routine seq
double FC_xintersect(double x, double z, double vx, double vz,
double t, double dt,
double d, struct FermiChopper_struct FCs)
{
return(FC_xzbrent(x, z, vx, vz, t, dt, 'x', d, FCs));
}
#pragma acc routine seq
double FC_zintersect(double x, double z, double vx, double vz,
double t, double dt,
double d, struct FermiChopper_struct FCs)
{
return(FC_xzbrent(x, z, vx, vz, t, dt, 'z', d, FCs));
}
#endif
%}
DECLARE
%{
struct FermiChopper_struct FCVars;
%}
INITIALIZE
%{
/************************ CALCULATION CONSTANTS *****************************/
strcpy(FCVars.compcurname, NAME_CURRENT_COMP);
FCVars.omega = 2*PI*nu;
if (!phase && delay) {
FCVars.ph0= fmod(-delay*nu*360,360)*DEG2RAD;
} else FCVars.ph0 = phase*DEG2RAD;
FCVars.sum_t=FCVars.sum_v=FCVars.sum_N=FCVars.sum_N_pass=0;
/* check of input parameters */
if (nslit < 1) nslit=1;
if (yheight <= 0) exit(printf("FermiChopper: %s: FATAL: unrealistic cylinder yheight =%g [m]\n", NAME_CURRENT_COMP, yheight));
if (m <= 0) { m=0; R0=0; }
if (radius <= 0) {
printf("FermiChopper: %s: FATAL: Unrealistic cylinder radius radius=%g [m]\n", NAME_CURRENT_COMP, radius);
exit(-1);
}
if (xwidth > 0 && xwidth < radius*2 && nslit > 0) {
w = xwidth/nslit;
}
if (w <= 0) {
printf("FermiChopper: %s: FATAL: Slits in the package have unrealistic width w=%g [m]\n", NAME_CURRENT_COMP, w);
exit(-1);
}
if (nslit*w > radius*2) {
nslit = floor(radius/w);
printf("FermiChopper: %s: Too many slits to fit in the cylinder\n"
" Adjusting nslit=%f\n", NAME_CURRENT_COMP, nslit);
}
if (length > radius*2) {
length = 2*sqrt(radius*radius - nslit*w*nslit*w/4);
printf("FermiChopper: %s: Slit package is longer than the whole\n"
" chopper cylinder. Adjusting length=%g [m]\n", NAME_CURRENT_COMP, length);
}
if (eff <= 0 || eff > 1) {
eff = 0.95;
printf("FermiChopper: %s: Efficiency is unrealistic\n"
" Adjusting eff=%f\n", NAME_CURRENT_COMP, eff);
}
if (Qc <= 0) { Qc = 0.02176; m = 0; R0 = 0; }
if (W <= 0) W=1e-6;
if (curvature) {
FCVars.C_slit = curvature;
if (1 < fabs(radius*curvature))
exit(printf("FermiChopper: %s: Slit curvature is unrealistic\n",
NAME_CURRENT_COMP));
}
FCVars.L_slit = length;
if (verbose && nu)
printf("FermiChopper: %s: Frequency nu=%g [Hz] %g [rpm], time frame=%g [s] phase=%g [deg]\n"
, NAME_CURRENT_COMP, nu, nu*60, 2/nu, FCVars.ph0*RAD2DEG);
FCVars.absorb_alreadyinside = 0;
FCVars.absorb_topbottom = 0;
FCVars.absorb_cylentrance = 0;
FCVars.absorb_sideentrance = 0;
FCVars.absorb_notreachentrance = 0;
FCVars.absorb_packentrance = 0;
FCVars.absorb_slitcoating = 0;
FCVars.warn_notreachslitwall = 0;
FCVars.absorb_exitslitpack = 0;
FCVars.absorb_maxiterations = 0;
FCVars.absorb_wrongdirection = 0;
FCVars.absorb_nocontrol = 0;
FCVars.absorb_cylexit = 0;
FCVars.warn_notreachslitoutput = 0;
/* fix for the wrong coordinate frame orientation to come back to McStas XYZ system */
FCVars.omega *= -1;
FCVars.ph0 *= -1;
FCVars.t0 = -FCVars.ph0/FCVars.omega;
%}
TRACE
%{
/** local CALCULATION VARIABLES**************************************/
/** Interaction with slit package ***************************/
double slit_input; /* length of the slits */
/** Variables for calculating interaction with blades ***************/
double xp1, zp1, vxp1;
/** Reflections ***********************************************/
double n1;
/** Multiple Reflections ******************************/
int loopcounter=0; /* How many reflections happen? */
/** Time variables *********************************/
double t3=0; /* interaction time at n3 position (slit wall) */
double t1=0,t2=0; /* cylinder intersection time (at entry and exit of slit pack - n1 n2 - or cylinder) */
double dt; /* interaction intervals (e.g. time for exiting slit pack) */
double X[5],Z[5]; /* position of interaction locations in the Fermi chopper rotating frame
[0]=cylinder input
[1]=slit input
[2]=slit wall reflection
[3]=slit exit
[4]=cylinder exit
*/
double ref = 0;
double par[5] = {R0, Qc, alpha, m, W};
/************************ TIME OF FLIGHT RESET ************************/
if (zero_time == 1 && nu)
t -= floor( (t+1/(4*nu))*(2*nu) )/(2*nu);
/* zero arrays used to store positions */
for (loopcounter=0; loopcounter < 5; loopcounter++)
X[loopcounter] = Z[loopcounter]=0;
/************** test, if the neutron interacts with the cylinder ***/
if (cylinder_intersect (&t1, &t2, x, y, z, vx, vy, vz, radius, yheight))
{
if (t1 <= 0) { /* Neutron started inside the cylinder */
if (verbose > 0 && FCVars.absorb_alreadyinside<FermiChopper_MAXITER) printf("FermiChopper: %s: ABSORB Neutron started inside the cylinder, t1=%8.3g (enter).\n",
NAME_CURRENT_COMP, t1);
#pragma acc atomic
FCVars.absorb_alreadyinside = FCVars.absorb_alreadyinside + 1;
ABSORB;
}
if (verbose > 2)
printf("FermiChopper: %s: t1=%8.3g t2=%8.3g xyz=[%8.3g %8.3g %8.3g] v=[%8.3g %8.3g %8.3g] t=%8.3g (init).\n",
NAME_CURRENT_COMP, t1, t2, x,y,z,vx,vy,vz,t);
dt=t2-t1; /* total time of flight inside the cylinder */
PROP_DT(t1); /* Propagates neutron to entrance of the cylinder */
SCATTER;
if (verbose > 2)
printf("FermiChopper: %s: PROP_DT t1=%8.3g t2=%8.3g xyz=[%8.3g %8.3g %8.3g] v=[%8.3g %8.3g %8.3g] t=%8.3g (IN cyl).\n",
NAME_CURRENT_COMP, t1, t2, x,y,z,vx,vy,vz,t);
/* neutron must not enter or leave from top or bottom of cylinder. */
if (fabs(y) >= yheight/2.0 || fabs(y+vy*dt) >= yheight/2.0) {
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron hits top/bottom of cylinder, y=%8.3g (enter).\n",
NAME_CURRENT_COMP, y);
#pragma acc atomic
FCVars.absorb_topbottom = FCVars.absorb_topbottom + 1;
ABSORB;
}
vxp1 = sqrt(vx*vx+vy*vy+vz*vz);
double tmp=p*vxp1;
#pragma acc atomic
FCVars.sum_v = FCVars.sum_v + tmp;
tmp = p*t;
#pragma acc atomic
FCVars.sum_t = FCVars.sum_t + tmp;
#pragma acc atomic
FCVars.sum_N = FCVars.sum_N + p;
if (zero_time > 1 && FCVars.sum_N) { /* automatic phase adjustment */
double mean_t, mean_phase;
mean_t = FCVars.sum_t/FCVars.sum_N;
mean_phase = fmod(mean_t*nu*2*PI, 2*PI);
/* now we shift the phase so that the neutron pulse is centered on the slit pack */
mean_phase+= radius/vxp1*2*PI*nu;
#pragma acc atomic write
FCVars.ph0 = mean_phase;
}
/* neutron must enter the cylinder opening: |X'| < full package width*/
xp1 = FC_xrot(x,z, t,FCVars); /* X'(t) */
if (fabs(xp1) >= nslit*w/2) {
if (verbose > 2)
printf("FermiChopper: %s: ABSORB Neutron X is outside cylinder aperture, x'=%8.3g > %g (enter).\n",
NAME_CURRENT_COMP, xp1, nslit*w/2);
#pragma acc atomic
FCVars.absorb_cylentrance = FCVars.absorb_cylentrance + 1;
ABSORB;
}
/*********************** PROPAGATE TO SLIT PACKAGE **************************/
/* zp1 = Z' at entrance of cylinder Z'(t) */
zp1 = FC_zrot(x,z, t, FCVars);
X[0] = xp1; Z[0] = zp1;
/* here we should have sqrt(x*x+z*z) == sqrt(xp1*xp1+zp1*zp1) */
t3 = sqrt(x*x+z*z) / sqrt(xp1*xp1+zp1*zp1);
if (t3 < 0.99 || 1.01 < t3) {
if (verbose > 1 && FCVars.absorb_cylentrance < FermiChopper_MAXITER)
printf("FermiChopper: %s: ABSORB Neutron radius on cylinder in static frame r=%g does not match that of rotating frame r'=%g.\n",
NAME_CURRENT_COMP, sqrt(x*x+z*z), sqrt(xp1*xp1+zp1*zp1));
#pragma acc atomic
FCVars.absorb_cylentrance = FCVars.absorb_cylentrance +1 ;
ABSORB;
}
/* Checking on which side of the Chopper the Neutron enters: sign(Z') */
slit_input = (zp1 > 0 ? length/2 : -length/2);
/* time shift to reach slit package in [0,time to exit cylinder]: Z'=slit_input */
/* t3 is used here as a tmp variable, will be redefined in for loop */
t3 = FC_zintersect(x,z,vx,vz, t,dt, slit_input, FCVars);
if( (t3 < 0)||(t3 > dt) ) {
if (verbose > 2 && FCVars.absorb_notreachentrance < FermiChopper_MAXITER) {
printf("FermiChopper: %s: Can not reach entrance of slits. dt=%8.3g t3=%8.3g (intersection:1).\n",
NAME_CURRENT_COMP, dt, t3);
if (t3 == -3)
printf(" No sign change to determine intersection\n");
else if (t3 == -2)
printf(" Max iterations reached\n");
else if (t3 < 0)
printf(" Error when solving intersection\n");
}
#pragma acc atomic
FCVars.absorb_notreachentrance = FCVars.absorb_notreachentrance + 1;
ABSORB; /* neutron can not reach slit entrance */
}
/* Propagating to the slit package entrance */
PROP_DT(t3); /* dt = t2-t1: time in cylinder */
dt -= t3; /* remaining time from slit pack entry to exit of cylinder */
xp1 = FC_xrot(x,z, t, FCVars); /* should be slit_input */
zp1 = FC_zrot(x,z, t, FCVars);
X[1] = xp1; Z[1] = zp1;
#ifndef OPENACC
if (mcdotrace) {
/* indicate position of neutron in mcdisplay */
double xp2 = x; double zp2 = z; x = xp1; z=zp1; SCATTER; x=xp2; z=zp2;
} else
#endif
SCATTER;
if (verbose > 2)
printf("FermiChopper: %s: PROP_DT t=%8.3g dt=%8.3g x'=%8.3g z'=%8.3g length=%g (slit enter).\n",
NAME_CURRENT_COMP, t, dt, xp1, zp1, slit_input);
/* must have X'< slit package width at package Z'=slit_input */
if (fabs(xp1) >= nslit*w/2) {
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron X is outside slit package, x'=%8.3g > %g (enter).\n",
NAME_CURRENT_COMP, xp1, nslit*w/2);
#pragma acc atomic
FCVars.absorb_packentrance = FCVars.absorb_packentrance + 1;
ABSORB;
}
/* solve Z'=-slit_input for time of exit of slit package */
/* t3 is used here as a tmp variable, will be redefined in for loop */
t3 = FC_zintersect(x,z,vx,vz, t,dt*1.1, -slit_input, FCVars);
if((t3 < FermiChopper_TimeAccuracy)||(t3 > dt)) {
if (verbose > 1 && FCVars.warn_notreachslitoutput < FermiChopper_MAXITER) {
printf("FermiChopper: %s: Can not reach exit of slits. dt=%8.3g t3=%8.3g (intersection:2).\n",
NAME_CURRENT_COMP, dt, t3);
if (t3 == -3)
printf(" No sign change to determine intersection\n");
else if (t3 == -2)
printf(" Max iterations reached\n");
else if (t3 < 0)
printf(" Error when solving intersection\n");
}
#pragma acc atomic
FCVars.warn_notreachslitoutput = FCVars.warn_notreachslitoutput + 1;
/* we estimate analytically the time to the slit exit */
t3 = length/vxp1;
}
dt = t3; /* reduce time interval to [0, time of slit exit] */
/* here we should have dt*v = length (slit entrance -> exit) */
t3 = fabs(FC_xzrot_dt(x,z,vx,vz, t, 0 , 'z', FCVars) - FC_xzrot_dt(x,z,vx,vz, t, dt, 'z', FCVars))/length;
if (fabs(t3-1) > 0.02) {
if (verbose > 0 && FCVars.warn_notreachslitoutput < FermiChopper_MAXITER)
printf("FermiChopper: %s: ABSORB Neutron propagation time v*dt/length=%g in slit does not match its length=%g (slit exit expected).\n",
NAME_CURRENT_COMP, t3, length);
#pragma acc atomic
FCVars.warn_notreachslitoutput = FCVars.warn_notreachslitoutput + 1;
ABSORB;
}
/* dt= time shift to go to exit of slit package (or exit of cylinder in case of error) */
/*
|---------|
| / |
|o * (dt)
| |
|---------|
*/
/*********************PROPAGATION INSIDE THE SLIT PACKAGE *******************/
/* index of slit hit at entrance n1=-N/2 (xp1=-) ... N/2 (xp1=+) */
n1 = floor(xp1/w);
/******************* BEGIN LOOP FOR MULTIPLE REFLECTIONS ********************/
for (loopcounter=0; loopcounter<=FermiChopper_MAXITER; loopcounter++) {
double dt_to_tangent=0; /* time shift to go to tangent intersection */
double n2,n3; /* slit indices */
double xp2, zp2,xp3=0,vxp2=0,vzp1=0; /* position, velocity */
double q; /* used for calculating new velocities after reflection */
int i;
/* compute trajectory tangents: m1=Vz'+w.X'(t), m2=Vz'+w.X'(t+dt) */
xp1 = FC_xrot (x,z, t, FCVars); /* X'(t) current position */
xp2 = FC_xzrot_dt(x,z,vx,vz, t, dt, 'x', FCVars); /* X'(t+dt) slit exit */
zp2 = FC_xzrot_dt(x,z,vx,vz, t, dt, 'z', FCVars); /* Z'(t+dt) slit exit */
/* slit index at the end of the slit: */
n2 = floor(xp2/w);
/* quick exit for absorbing walls when neutron changes slit index */
if (n2 != n1 && (m <= 0 || R0 <= 0 || Qc <= 0)) {
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron hits absorbing coating (change slit).\n",
NAME_CURRENT_COMP);
#pragma acc atomic
FCVars.absorb_slitcoating = FCVars.absorb_slitcoating + 1;
ABSORB;
}
/* compute transversal velocity to determine their intersection */
vxp1= FC_xrot (vx+z*FCVars.omega,vz-x*FCVars.omega,
t, FCVars); /* dX'(t)/dt slope at current position*/
vxp2= FC_xrot (vx+(z+vz*dt)*FCVars.omega,vz-(x+vx*dt)*FCVars.omega,
t+dt,FCVars); /* dX'(t+dt)/dt slope at slit exit */
/* absolute time at tangent intersection, changed to time shift below */
dt_to_tangent = (vxp1 - vxp2 ? (xp2 - xp1 - dt*vxp2)/(vxp1 - vxp2) : -1);
/* If algorithm fails, take the middle of the interval*/
if (dt_to_tangent < 0 || dt_to_tangent > dt) {
if (verbose > 1)
printf("FermiChopper: %s: WARNING could not determine tangent intersection dt=%g. Using middle.\n",
NAME_CURRENT_COMP, dt_to_tangent);
dt_to_tangent=dt*0.5;
}
/*
*(dt_to_tangent, xp3)
|---------|
| / \ |
xp1 |o \|(dt) xp2
| |
|---------|
*/
/* point coordinates at tangent intersection/middle point (max deviation from optical axis) */
xp3 = FC_xzrot_dt(x,z,vx,vz, t, dt_to_tangent, 'x', FCVars); /* X'(t+dt_to_tangent) */
/* slit index at the tangent intersection/middle point */
n3 = floor(xp3/w);
if (verbose > 2)
printf("FermiChopper: %s: t3=%8.3g slit_indices=[%g %g %g] (time at tangent intersection).\n",
NAME_CURRENT_COMP, dt_to_tangent, n1, n2, n3);
/* change slit means there is a reflection/intersection inside */
if ( n2!=n1 || n3!=n1 ) {
double t3a, t3b, distance_Wa, distance_Wb;
if (m <= 0 || R0 <= 0 || Qc <= 0) {
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron hits absorbing coating (change slit).\n",
NAME_CURRENT_COMP);
#pragma acc atomic
FCVars.absorb_slitcoating = FCVars.absorb_slitcoating + 1;
ABSORB;
}
/* Choosing the first time it isn't in the slit anymore */
if(n2 == n1 && n3 != n1){
n2 = n3;
}
/* get position of slit wall towards which neutron is propagating */
if (n2 > n1) { /* X' positive side of slit is in principle the first intersection to test*/
distance_Wa = n1*w+w;
distance_Wb = n1*w;
} else { /* X' negative side of slit */
distance_Wb = n1*w+w;
distance_Wa = n1*w;
}
/* time shift to reach slit wall point in [0,dt_to_tangent]: X'=distance_W slit_wall */
for (i=0; i< 2; i++) {
/* first attempt: [0,dt_to_tangent] (to max deviation location)
second attempt: [0, dt] (to slit exit) */
double dt_search = (i == 0 ? dt_to_tangent : dt);
t3a = FC_xintersect(x,z,vx,vz, t,dt_to_tangent, distance_Wa, FCVars);
t3b = FC_xintersect(x,z,vx,vz, t,dt_to_tangent, distance_Wb, FCVars);
if (t3b < 0) t3 = t3a;
else if (t3a < 0 && t3b >= 0) t3 = t3b;
else t3 = (t3a < t3b ? t3a : t3b);
if (FermiChopper_TimeAccuracy < t3 && t3 < dt_search)
break; /* we found the intersection location */
}
/* handle case where intersection search fails */
if (t3 < FermiChopper_TimeAccuracy || t3 >= dt_to_tangent) {
if (verbose > 1 && FCVars.warn_notreachslitwall < FermiChopper_MAXITER) {
printf("FermiChopper: %s: Can not reach slit wall (iteration %i). dt=%8.3g t3=%8.3g (intersection:3).\n",
NAME_CURRENT_COMP, loopcounter, dt_to_tangent, t3);
if (t3 == -3)
printf(" No sign change to determine intersection\n");
else if (t3 == -2)
printf(" Max iterations reached\n");
else if (t3 < 0 || t3 >= dt_to_tangent)
printf(" Error when solving intersection\n");
}
/* neutron can not reach slit wall. */
#pragma acc atomic
FCVars.warn_notreachslitwall = FCVars.warn_notreachslitwall + 1;
ABSORB;
}
/* Propagate to slit wall point (t+t3) on slit n3 wall */
PROP_DT(t3); dt -= t3; /* dt: time remaining to slit exit after propagation */
xp1 = FC_xrot(x,z, t, FCVars); /* X'(t+t3) : on slit wall */
zp1 = FC_zrot(x,z, t, FCVars); /* Z'(t+t3) : on slit wall */
X[2] = xp1; Z[2] = zp1;
if (verbose > 2)
printf("FermiChopper: %s: PROP_DT t3=%8.3g dt=%8.3g xyz=[%8.3g %8.3g %8.3g] (on wall). z'=%g\n",
NAME_CURRENT_COMP, t3, dt, x,y,z, zp1);
/* check if intersection point is still in the slit package, else exit loop */
if (fabs(zp1) > length/2 || dt <= 0) {
if (verbose > 2)
printf("FermiChopper: %s: Neutron is outside slit pack (on slit wall).\n",
NAME_CURRENT_COMP);
break;
}
/* here
|---o-----|
| / \ |
|/ \ |
| \ |(dt)
|---------|
*/
/* get velocity in rotating frame, on slit wall */
vxp1 = FC_xrot(vx,vz, t, FCVars);
vzp1 = FC_zrot(vx,vz, t, FCVars);
q = 2*V2Q*(fabs(vxp1));
{
/* double ref = 0;
double par[] = {R0, Qc, alpha, m, W};*/
StdReflecFunc(q, par, &ref);
if (ref>0) p *= ref;
else {
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron hits absorbing coating (on slit wall).\n",
NAME_CURRENT_COMP);
#pragma acc atomic
FCVars.absorb_slitcoating = FCVars.absorb_slitcoating + 1;
ABSORB;
} /* Cutoff ~ 1E-10 */
}
#ifndef OPENACC
if (mcdotrace) {
double xp2 = x; double zp2 = z;
/* indicate position of neutron in mcdisplay */
x = FC_xrot(x,z, t,FCVars); z= FC_zrot(x,z, t,FCVars); SCATTER; x=xp2; z=zp2;
} else
#endif
SCATTER;
/* reflect perpendicular velocity and compute new velocity in static frame */
vxp1 *= -1;
/* apply transposed Transformation matrix */
vx = FC_xrot( vxp1,-vzp1, t,FCVars);
vz = FC_zrot(-vxp1, vzp1, t,FCVars);
/* recompute time to slit exit */
/* solve Z'=-slit_input for time of exit of slit package */
t3 = FC_zintersect(x,z,vx,vz, t,dt, -slit_input, FCVars);
if(t3 < 0 || t3 > dt) {
if (verbose > 1 && FCVars.warn_notreachslitoutput < FermiChopper_MAXITER) {
printf("FermiChopper: %s: Can not reach exit of slits. dt=%8.3g t3=%8.3g (intersection:4).\n",
NAME_CURRENT_COMP, dt, t3);
if (t3 == -3)
printf(" No sign change to determine intersection\n");
else if (t3 == -2)
printf(" Max iterations reached\n");
else if (t3 < 0)
printf(" Error when solving intersection\n");
}
#pragma acc atomic
FCVars.warn_notreachslitoutput = FCVars.warn_notreachslitoutput + 1;
ABSORB;
/* neutron can not reach slit output. */
} else dt = t3; /* reduce time interval to [0, time of slit exit] */
} /* end if changed slit index */
else { /* neutron remains in the same slit: direct flight */
if (dt > 0) PROP_DT(dt); /* go to slit exit */
break;
}
} /* end for */
xp1 = FC_xrot(x,z, t,FCVars);
zp1 = FC_zrot(x,z, t,FCVars);
X[3] = xp1; Z[3] = zp1; /* slit exit */
if (fabs(xp1) >= nslit*w/2)
{
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron X is outside slit package, x'=%8.3g (slit exit).\n",
NAME_CURRENT_COMP, xp1);
#pragma acc atomic
FCVars.absorb_slitcoating = FCVars.absorb_slitcoating + 1;
ABSORB;
}
if (loopcounter >= FermiChopper_MAXITER)
{
if (verbose > 1 && FCVars.absorb_maxiterations < FermiChopper_MAXITER)
printf("FermiChopper: %s: Max iterations %i reached inside slit. Absorb.\n",
NAME_CURRENT_COMP, FermiChopper_MAXITER);
#pragma acc atomic
FCVars.absorb_maxiterations = FCVars.absorb_maxiterations + 1;
ABSORB;
}
/********************* EXIT SLIT PACKAGE ********************************/
/* propagation times to cylinder. Should use t2 to exit */
if (!cylinder_intersect (&t1, &t2, x, y, z, vx, vy, vz, radius, yheight)) {
/* must be inside the cylinder */
if (verbose > 1) printf("FermiChopper: %s: ABSORB Neutron has unexpectidely exited cylinder ! (exiting)\n",
NAME_CURRENT_COMP);
#pragma acc atomic
FCVars.absorb_exitslitpack = FCVars.absorb_exitslitpack + 1;
ABSORB;
}
if (t1 > 0)
{
if (verbose > 1 && FCVars.absorb_wrongdirection < FermiChopper_MAXITER)
printf("FermiChopper: %s: Neutrons are leaving chopper\n"
" in the wrong direction. Absorb.\n", NAME_CURRENT_COMP);
#pragma acc atomic
FCVars.absorb_wrongdirection = FCVars.absorb_wrongdirection + 1;
ABSORB;
}
if (t2 <= 0 && FCVars.absorb_nocontrol < FermiChopper_MAXITER)
{
if (verbose > 1)
printf("FermiChopper: %s: Neutrons are leaving chopper\n"
" without any control. Absorb.\n", NAME_CURRENT_COMP);
#pragma acc atomic
FCVars.absorb_nocontrol = FCVars.absorb_nocontrol + 1;
ABSORB;
}
/* propagate to cylinder surface (exit) */
PROP_DT(t2);
SCATTER;
xp1 = FC_xrot(x,z, t,FCVars);
zp1 = FC_zrot(x,z, t,FCVars);
X[4] = xp1; Z[4] = zp1;
if (verbose > 2)
printf("FermiChopper: %s: t1=%8.3g PROP_DT t2=%8.3g xyz=[%8.3g %8.3g %8.3g] (OUT cyl). z'=%g\n",
NAME_CURRENT_COMP, t1, t2, x,y,z, zp1);
/* Check if the neutron left the cylinder by its top or bottom */
if (fabs(y) >= yheight/2)
{
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron hits top/bottom of cylinder, y=%8.3g (exiting)\n",
NAME_CURRENT_COMP, y);
#pragma acc atomic
FCVars.absorb_topbottom = FCVars.absorb_topbottom + 1;
ABSORB;
}
/* must have X'< slit package width at package Z'=cylinder output */
if (fabs(xp1) >= nslit*w/2)
{
if (verbose > 2) printf("FermiChopper: %s: ABSORB Neutron X is outside slit package cylinder, xp1=%8.3g (exiting).\n",
NAME_CURRENT_COMP, xp1);
#pragma acc atomic
FCVars.absorb_cylexit = FCVars.absorb_cylexit + 1;
ABSORB;
}
/* Transmission coefficent */
p = p*eff; //finite cross section + transmission
#pragma acc atomic
FCVars.sum_N_pass = FCVars.sum_N_pass + p;
} /* end if cylinder_intersect */
%}
SAVE
%{
double mean_k, mean_v, mean_t, mean_w=0, mean_L=0;
if (FCVars.sum_N) {
mean_v = FCVars.sum_v/FCVars.sum_N;
mean_t = FCVars.sum_t/FCVars.sum_N;
mean_k = V2K*mean_v;
if (mean_k) mean_L = 2*PI/mean_k;
mean_w = VS2E*mean_v*mean_v;
/* base opening time */
double div, mean_phase;
div = atan2(w,length)/PI*180;
mean_phase = fmod(mean_t*nu*360, 360);
mean_phase+=radius/mean_v*360*nu;
if (mean_phase > 180) mean_phase -= 360;
if (!FCVars.sum_N_pass)
printf("FermiChopper: %s: No neutron can pass the chopper.\n", NAME_CURRENT_COMP);
if (!FCVars.sum_N_pass || verbose)
printf("FermiChopper: %s\n"
" Mean velocity v = %g [m/s]\n"
" Mean wavelength lambda= %g [Angs]\n"
" Mean energy omega = %g [meV]\n"
" Mean arrival time t = %g [s]\n"
" Mean phase = %g [deg] (%s)\n"
" Slit pack divergence = %g [deg] (full width)\n"
" Opening time dt = %g [s]\n"
" Intensity reaching FC = %g [n/s]\n"
" Intensity passing FC = %g [n/s]\n"
, NAME_CURRENT_COMP,
mean_v, mean_L, mean_w, mean_t, mean_phase,
(zero_time > 1 ? "set automatically" : "use phase=-(this value) to optimize"),
2*div,
(nu ? fabs(div/PI/nu) : 1),
FCVars.sum_N,
FCVars.sum_N_pass);
if (!FCVars.sum_N_pass || verbose) {
printf("FermiChopper: %s: Lost events anaylsis\n"
" Already inside: %li\n"
" By Top/Bottom of cylinder: %li\n"
" At cylinder entrance: %li\n"
" Hit cyl. entrance sides: %li\n"
" Can't prop. to slit pack: %li\n"
" At slit pack entrance: %li\n"
" On absorbing slit coating: %li\n"
" Exiting slit pack: %li\n"
" Too many iterations: %li\n"
" Prop. in wrong direction : %li\n"
" Mad neutron (no control): %li\n"
" At cylinder exit: %li\n"
, NAME_CURRENT_COMP,
FCVars.absorb_alreadyinside,
FCVars.absorb_topbottom,
FCVars.absorb_cylentrance,
FCVars.absorb_sideentrance,
FCVars.absorb_notreachentrance,
FCVars.absorb_packentrance,
FCVars.absorb_slitcoating,
FCVars.absorb_exitslitpack,
FCVars.absorb_maxiterations,
FCVars.absorb_wrongdirection,
FCVars.absorb_nocontrol,
FCVars.absorb_cylexit);
if (FCVars.warn_notreachslitwall || FCVars.warn_notreachslitoutput)
printf("Warning: Can not reach slit wall: %li\n"
"Warning: Can not reach slit output: %li\n",
FCVars.warn_notreachslitwall,
FCVars.warn_notreachslitoutput);
}
} else {
printf("FermiChopper: %s: No neutron can reach the chopper.\n", NAME_CURRENT_COMP);
}
%}
MCDISPLAY
%{
double index_x=0;
double index_z=0;
double xpos, zpos;
double Nz,Nx;
double ymin=-yheight/2.0;
double ymax= yheight/2.0;
double omega=FCVars.omega;
FCVars.omega=0;
// FCVars.ph0 =0;
Nz = (FCVars.C_slit ? 4 : 1);
Nx = (nslit > 11 ? 11 : nslit);
FCVars.C_slit *= -1;
/* cylinder top/center/bottom */
circle("xz", 0,ymax,0,radius);
circle("xz", 0,0 ,0,radius);
circle("xz", 0,ymin,0,radius);
/* vertical lines to make a kind of volume */
line( 0 ,ymin,-radius, 0 ,ymax,-radius);
line( 0 ,ymin, radius, 0 ,ymax, radius);
line(-radius,ymin, 0 ,-radius,ymax, 0 );
line( radius,ymin, 0 , radius,ymax, 0 );
/* slit package */
for (index_x = -Nx/2; index_x < Nx/2; index_x++) {
for (index_z = -Nz/2; index_z < Nz/2; index_z++) {
double xs1, zs1, zs2;
double xp1, xp2, zp1, zp2;
zs1 = length*index_z/Nz;
zs2 = length*(index_z+1)/Nz;
xs1 = w*nslit*index_x/Nx;
xp1 = FC_xrot(xs1, zs1, 0, FCVars);
xp2 = FC_xrot(xs1, zs2, 0, FCVars);
zp1 = FC_zrot(xs1, zs1, 0, FCVars);
zp2 = FC_zrot(xs1, zs2, 0, FCVars);
multiline(5, xp1, ymin, zp1,
xp1, ymax, zp1,
xp2, ymax, zp2,
xp2, ymin, zp2,
xp1, ymin, zp1);
}
}
/* cylinder inner sides containing slit package */
double xp1, xp2, zp1, zp2;
xpos = nslit*w/2;
zpos = sqrt(radius*radius - xpos*xpos);
xp1 = FC_xrot(xpos, -zpos, 0, FCVars);
xp2 = FC_xrot(xpos, +zpos, 0, FCVars);
zp1 = FC_zrot(xpos, -zpos, 0, FCVars);
zp2 = FC_zrot(xpos, +zpos, 0, FCVars);
multiline(5, xp1, ymin, zp1,
xp1, ymax, zp1,
xp2, ymax, zp2,
xp2, ymin, zp2,
xp1, ymin, zp1);
xpos *= -1;
xp1 = FC_xrot(xpos, -zpos, 0, FCVars);
xp2 = FC_xrot(xpos, +zpos, 0, FCVars);
zp1 = FC_zrot(xpos, -zpos, 0, FCVars);
zp2 = FC_zrot(xpos, +zpos, 0, FCVars);
multiline(5, xp1, ymin, zp1,
xp1, ymax, zp1,
xp2, ymax, zp2,
xp2, ymin, zp2,
xp1, ymin, zp1);
FCVars.omega=omega;
%}
END
|