File: Guide_channeled.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (329 lines) | stat: -rw-r--r-- 11,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Guide_channeled
*
* %I
* Written by: Christian Nielsen
* Date: 1999
* Origin: Risoe
*
* Neutron guide with channels (bender section).
*
* %D
* Models a rectangular guide tube centered on the Z axis. The entrance lies
* in the X-Y plane.
* The guide may be tapered, and may have vertical subdivisions (used for
* bender devices).
*
* There is a special rotating mode in order to approximate a Fermi Chopper
* behaviour, in the case the neutron trajectory is nearly linear inside the
* chopper slits, i.e. the neutrons are fast w/r/ to the chopper speed.
* Slits are straight, but may be super-mirror coated. In this case, the
* component is NOT centered, but located at its entry window. It should then
* be shifted by -l/2.
*
* Example: Guide_channeled(w1=0.1, h1=0.1, w2=0.1, h2=0.1, l=2.0,
*  R0=0.99, Qcx=0.0219, Qcy=0.0219, alphax=6.07, alphay=6.07, W=0.003, nslit=1,
* d=0.0005, mx=1, my=1)
*
* %BUGS
* This component does not work with gravitation on. Use Guide_gravity.
* This component does not work in multichannel focusing geometry.
*
* %P
* INPUT PARAMETERS:
*
* w1: [m]       Width at the guide entry
* h1: [m]       Height at the guide entry
* w2: [m]       Width at the guide exit
* h2: [m]       Height at the guide exit
* l: [m]        Length of guide
* d: [m]        Thickness of subdividing absorbing walls
* nslit: [1]    Number of channels in the guide (>= 1)
* R0: [1]       Low-angle reflectivity
* Qc: [AA-1]    Critical scattering vector
* alpha: [AA]   Slope of reflectivity
* m: [1]        m-value of material. Zero means completely absorbing.
* W: [AA-1]     Width of supermirror cut-off for all mirrors
* Qcx: [AA-1]   Critical scattering vector for left and right vertical mirrors in each channel
* Qcy: [AA-1]   Critical scattering vector for top and bottom mirrors
* alphax: [AA]  Slope of reflectivity for left and right vertical mirrors in each channel
* alphay: [AA]  Slope of reflectivity for top and bottom mirrors
* mx: [1]       m-value of material for left and right vertical mirrors in each channel. Zero means completely absorbing.
* my: [1]       m-value of material for top and bottom mirrors. Zero means completely absorbing.
* nu: [Hz]      Rotation frequency (round/s) for Fermi Chopper approximation
* phase: [deg]  Phase shift for the Fermi Chopper approximation
*
* %D
* Example values: mx=4 my=2 Qcx=Qcy=0.0219 W=1/300 alphax=alphay=6.49 R0=1
*
* %E
*******************************************************************************/

DEFINE COMPONENT Guide_channeled

SETTING PARAMETERS (w1, h1, w2=0, h2=0, l,
R0=0.995, Qc=0, alpha=0, m=0, nslit=1, d=0.0005,
Qcx=0.0218, Qcy=0.0218, alphax=4.38, alphay=4.38, W=0.003, mx=1, my=1, nu=0, phase=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE %{
%include "ref-lib"
%}
DECLARE
%{
double w1c;
double w2c;
double ww;
double hh;
double whalf;
double hhalf;
double lwhalf;
double lhhalf;
%}

INITIALIZE
%{
if (!w2) w2=w1;
  if (!h2) h2=h1;
  if (nslit <= 0 || W <=0)
  { fprintf(stderr,"Guide_channeled: %s: nslit and W must be positive\n", NAME_CURRENT_COMP);
    exit(-1); }
  w1c = (w1 + d)/(double)nslit;
  w2c = (w2 + d)/(double)nslit;
  ww = .5*(w2c - w1c);
  hh = .5*(h2 - h1);
  whalf = .5*(w1c - d);
  hhalf = .5*h1;
  lwhalf = l*whalf;
  lhhalf = l*hhalf;

  if (m)     { mx=my=m; }
  if (Qc)    { Qcx=Qcy=Qc; }
  if (alpha) { alphax=alphay=alpha; }

  if ((nslit > 1) && (w1 != w2))
  {
    fprintf(stderr,"WARNING: Guide_channeled: %s:"
    "This component does not work with multichannel focusing guide\n"
    "Use Guide_gravity for that.\n", NAME_CURRENT_COMP);
    exit(-1);
  }

  if (d*nslit > w1) exit(fprintf(stderr, "Guide_channeled: %s: absorbing walls fill input window. No space left for transmission (d*nslit > w1).\n", NAME_CURRENT_COMP));

  if (mcgravitation) fprintf(stderr,"WARNING: Guide_channeled: %s: "
    "This component produces wrong results with gravitation !\n"
    "Use Guide_gravity.\n",
    NAME_CURRENT_COMP);
  if (nu != 0 || phase != 0) {
      if (w1 != w2 || h1 != h2)
      exit(fprintf(stderr,"Guide_channeled: %s: rotating slit pack must be straight (w1=w2 and h1=h2).\n", NAME_CURRENT_COMP));
      printf("Guide_channeled: %s: Fermi Chopper mode: frequency=%g [Hz] phase=%g [deg]\n",
        NAME_CURRENT_COMP, nu, phase);
    }
%}

TRACE
%{
  double t1,t2;                                 /* Intersection times. */
  double av,ah,bv,bh,cv1,cv2,ch1,ch2,dd;        /* Intermediate values */
  double vdotn_v1,vdotn_v2,vdotn_h1,vdotn_h2;   /* Dot products. */
  int i;                                        /* Which mirror hit? */
  double q;                                     /* Q [1/AA] of reflection */
  double nlen2;                                 /* Vector lengths squared */
  double edge;
  double hadj;                                  /* Channel displacement */
  double angle=0;

  if (nu != 0 || phase != 0) { /* rotate neutron w/r to guide element */
    /* approximation of rotating straight Fermi Chopper */
    Coords   X = coords_set(x,y,z-l/2);  /* current coordinates of neutron in centered static frame */
    Rotation R;
    double dt=(-z+l/2)/vz; /* time shift to each center of slit package */
    angle=fmod(360*nu*(t+dt)+phase, 360); /* in deg */
    /* modify angle so that Z0 guide side is always in front of incoming neutron */
    if (angle > 90 && angle < 270) { angle -= 180; }
    angle *= DEG2RAD;
    rot_set_rotation(R, 0, -angle, 0); /* will rotate neutron instead of comp: negative side */
    /* apply rotation to centered coordinates */
    Coords   RX = rot_apply(R, X);
    coords_get(RX, &x, &y, &z);
    z = z+l/2;
    /* rotate speed */
    X  = coords_set(vx,vy,vz);
    RX = rot_apply(R, X);
    coords_get(RX, &vx, &vy, &vz);
  }

  /* Propagate neutron to guide entrance. */
  PROP_Z0;
  /* Scatter here to ensure that fully transmitted neutrons will not be
     absorbed in a GROUP construction, e.g. all neutrons - even the
     later absorbed ones are scattered at the guide entry. */
  SCATTER;
  if(x <= w1/-2.0 || x >= w1/2.0 || y <= -hhalf || y >= hhalf)
    ABSORB;
  /* Shift origin to center of channel hit (absorb if hit dividing walls) */
  x += w1/2.0;
  edge = floor(x/w1c)*w1c;
  if(x - edge > w1c - d)
  {
    x -= w1/2.0; /* Re-adjust origin */
    ABSORB;
  }
  x -= (edge + (w1c - d)/2.0);
  hadj = edge + (w1c - d)/2.0 - w1/2.0;
  for(;;)
  {
    /* Compute the dot products of v and n for the four mirrors. */
    av = l*vx; bv = ww*vz;
    ah = l*vy; bh = hh*vz;
    vdotn_v1 = bv + av;         /* Left vertical */
    vdotn_v2 = bv - av;         /* Right vertical */
    vdotn_h1 = bh + ah;         /* Lower horizontal */
    vdotn_h2 = bh - ah;         /* Upper horizontal */
    /* Compute the dot products of (O - r) and n as c1+c2 and c1-c2 */
    cv1 = -whalf*l - z*ww; cv2 = x*l;
    ch1 = -hhalf*l - z*hh; ch2 = y*l;
    /* Compute intersection times. */
    t1 = (l - z)/vz;
    i = 0;
    if(vdotn_v1 < 0 && (t2 = (cv1 - cv2)/vdotn_v1) < t1)
    {
      t1 = t2;
      i = 1;
    }
    if(vdotn_v2 < 0 && (t2 = (cv1 + cv2)/vdotn_v2) < t1)
    {
      t1 = t2;
      i = 2;
    }
    if(vdotn_h1 < 0 && (t2 = (ch1 - ch2)/vdotn_h1) < t1)
    {
      t1 = t2;
      i = 3;
    }
    if(vdotn_h2 < 0 && (t2 = (ch1 + ch2)/vdotn_h2) < t1)
    {
      t1 = t2;
      i = 4;
    }
    if(i == 0)
      break;                    /* Neutron left guide. */
    PROP_DT(t1);
    switch(i)
    {
      case 1:                   /* Left vertical mirror */
        nlen2 = l*l + ww*ww;
        q = V2Q*(-2)*vdotn_v1/sqrt(nlen2);
        dd = 2*vdotn_v1/nlen2;
        vx = vx - dd*l;
        vz = vz - dd*ww;
        break;
      case 2:                   /* Right vertical mirror */
        nlen2 = l*l + ww*ww;
        q = V2Q*(-2)*vdotn_v2/sqrt(nlen2);
        dd = 2*vdotn_v2/nlen2;
        vx = vx + dd*l;
        vz = vz - dd*ww;
        break;
      case 3:                   /* Lower horizontal mirror */
        nlen2 = l*l + hh*hh;
        q = V2Q*(-2)*vdotn_h1/sqrt(nlen2);
        dd = 2*vdotn_h1/nlen2;
        vy = vy - dd*l;
        vz = vz - dd*hh;
        break;
      case 4:                   /* Upper horizontal mirror */
        nlen2 = l*l + hh*hh;
        q = V2Q*(-2)*vdotn_h2/sqrt(nlen2);
        dd = 2*vdotn_h2/nlen2;
        vy = vy + dd*l;
        vz = vz - dd*hh;
        break;
    }
    /* Now compute reflectivity. */
    if((i <= 2 && mx == 0) || (i > 2 && my == 0))
    {
      x += hadj; /* Re-adjust origin */
      ABSORB;
    } else {
      double ref=1;
      if (i <= 2)
      {
        double par[] = {R0, Qcx, alphax, mx, W};
        StdReflecFunc(q, par, &ref);
        if (ref > 0)
          p *= ref;
        else {
          x += hadj; /* Re-adjust origin */
          ABSORB;                               /* Cutoff ~ 1E-10 */
        }
      } else {
        double par[] = {R0, Qcy, alphay, my, W};
        StdReflecFunc(q, par, &ref);
        if (ref > 0)
          p *= ref;
        else {
          x += hadj; /* Re-adjust origin */
          ABSORB;                               /* Cutoff ~ 1E-10 */
        }
      }
    }
    x += hadj; SCATTER; x -= hadj;
  } /* end for */
  x += hadj; /* Re-adjust origin */
  if (nu != 0 || phase != 0) { /* rotate back neutron w/r to guide element */
      /* approximation of rotating straight Fermi Chopper */
      Coords   X = coords_set(x,y,z-l/2);  /* current coordinates of neutron in centered static frame */
      Rotation R;
      rot_set_rotation(R, 0, angle, 0); /* will rotate back neutron: positive side */
      /* apply rotation to centered coordinates */
      Coords   RX = rot_apply(R, X);
      coords_get(RX, &x, &y, &z);
      z = z+l/2;
      /* rotate speed */
      X  = coords_set(vx,vy,vz);
      RX = rot_apply(R, X);
      coords_get(RX, &vx, &vy, &vz);
    }
%}

MCDISPLAY
%{
  int i;

  /* Draw the vertial slit-planes along each channel */
  for(i = 0; i < nslit; i++)
  {
    polygon(4,
              i*w1c - w1/2.0, -h1/2.0, 0.0,
              i*w2c - w2/2.0, -h2/2.0, (double)l,
              i*w2c - w2/2.0,  h2/2.0, (double)l,
              i*w1c - w1/2.0,  h1/2.0, 0.0);
    polygon(4,
              (i+1)*w1c - d - w1/2.0, -h1/2.0, 0.0,
              (i+1)*w2c - d - w2/2.0, -h2/2.0, (double)l,
              (i+1)*w2c - d - w2/2.0,  h2/2.0, (double)l,
              (i+1)*w1c - d - w1/2.0,  h1/2.0, 0.0);
  }
  /* Add "bottom" and "lid" */
  polygon(4,-w1/2.0, -h1/2.0, 0.0, w1/2.0, -h1/2.0, 0.0, w2/2.0, -h2/2.0, (double)l, -w2/2.0, -h2/2.0, (double)l);
  polygon(4,-w1/2.0, h1/2.0, 0.0, w1/2.0, h1/2.0, 0.0, w2/2.0, h2/2.0, (double)l, -w2/2.0, h2/2.0, (double)l);

  if (nu || phase) {
    double radius = sqrt(w1*w1+l*l);
    /* cylinder top/center/bottom  */
    circle("xz", 0,-h1/2,l/2,radius);
    circle("xz", 0,0    ,l/2,radius);
    circle("xz", 0, h1/2,l/2,radius);
  }
%}

END