File: Monochromator_flat.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (264 lines) | stat: -rw-r--r-- 10,296 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Monochromator_flat
*
* %I
*
* Written by: Kristian Nielsen
* Date: 1999
* Origin: Risoe
*
* Flat Monochromator crystal with anisotropic mosaic.
*
* %D
* Flat, infinitely thin mosaic crystal, useful as a monochromator or analyzer.
* For an unrotated monochromator component, the crystal surface lies in the Y-Z
* plane (ie. parallel to the beam).
* The mosaic is anisotropic gaussian, with different FWHMs in the Y and Z
* directions. The scattering vector is perpendicular to the surface.
*
* Example: Monochromator_flat(zmin=-0.1, zmax=0.1, ymin=-0.1, ymax=0.1, mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734)
*
* Monochromator lattice parameter
* PG       002 DM=3.355 AA (Highly Oriented Pyrolythic Graphite)
* PG       004 DM=1.677 AA
* Heusler  111 DM=3.362 AA (Cu2MnAl)
* CoFe         DM=1.771 AA (Co0.92Fe0.08)
* Ge       111 DM=3.266 AA
* Ge       311 DM=1.714 AA
* Ge       511 DM=1.089 AA
* Ge       533 DM=0.863 AA
* Si       111 DM=3.135 AA
* Cu       111 DM=2.087 AA
* Cu       002 DM=1.807 AA
* Cu       220 DM=1.278 AA
* Cu       111 DM=2.095 AA
*
* %P
* INPUT PARAMETERS:
*
* zmin: [m]               Lower horizontal (z) bound of crystal 
* zmax: [m]               Upper horizontal (z) bound of crystal 
* ymin: [m]               Lower vertical (y) bound of crystal 
* ymax: [m]               Upper vertical (y) bound of crystal 
* mosaich: [arc minutes]  Horizontal mosaic (in z direction) (FWHM) 
* mosaicv: [arc minutes]  Vertical mosaic (in y direction) (FWHM) 
* r0: [1]                 Maximum reflectivity 
* Q: [1/angstrom]         Magnitude of scattering vector 
*
* optional parameters
* zwidth: [m]             Width of crystal, instead of zmin and zmax 
* yheight: [m]            Height of crystal, instead of ymin and ymax 
* DM: [AA]                monochromator d-spacing, instead of Q = 2*pi/DM 
*
* %E
*******************************************************************************/

DEFINE COMPONENT Monochromator_flat

SETTING PARAMETERS (zmin=-0.05, zmax=0.05, ymin=-0.05, ymax=0.05,
zwidth=0, yheight=0,
mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734, DM=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef GAUSS
/* Define these arrays only once for all instances. */
/* Values for Gauss quadrature. Taken from Brice Carnahan, H. A. Luther and
James O Wilkes, "Applied numerical methods", Wiley, 1969, page 103.
This reference is available from the Copenhagen UB2 library */
double Gauss_X[] = {-0.987992518020485, -0.937273392400706, -0.848206583410427,
-0.724417731360170, -0.570972172608539, -0.394151347077563,
-0.201194093997435, 0, 0.201194093997435,
0.394151347077563, 0.570972172608539, 0.724417731360170,
0.848206583410427, 0.937273392400706, 0.987992518020485};
double Gauss_W[] = {0.030753241996117, 0.070366047488108, 0.107159220467172,
0.139570677926154, 0.166269205816994, 0.186161000115562,
0.198431485327111, 0.202578241925561, 0.198431485327111,
0.186161000115562, 0.166269205816994, 0.139570677926154,
0.107159220467172, 0.070366047488108, 0.030753241996117};
#pragma acc declare create ( Gauss_X )
#pragma acc declare create ( Gauss_W )

#define GAUSS(x,mean,rms) \
  (exp(-((x)-(mean))*((x)-(mean))/(2*(rms)*(rms)))/(sqrt(2*PI)*(rms)))
#endif
%}

DECLARE
%{
  double mos_rms_y; /* root-mean-square of mosaic in radians */
  double mos_rms_z;
  double mos_rms_max;
  double mono_Q;
%}

INITIALIZE
%{
  mos_rms_y = MIN2RAD*mosaicv/sqrt(8*log(2));
  mos_rms_z = MIN2RAD*mosaich/sqrt(8*log(2));
  mos_rms_max = mos_rms_y > mos_rms_z ? mos_rms_y : mos_rms_z;

  mono_Q = Q;
  if (DM != 0) mono_Q = 2*PI/DM;

  if (zwidth>0)  { zmax = zwidth/2;  zmin=-zmax; }
  if (yheight>0) { ymax = yheight/2; ymin=-ymax; }

  if (zmin==zmax || ymin==ymax)
    exit(fprintf(stderr, "Monochromator_flat: %s : Surface is null (zmin,zmax,ymin,ymax)\n", NAME_CURRENT_COMP));
%}

TRACE
%{
  double y1,z1,t1,dt,kix,kiy,kiz,ratio,order,q0x,k,q0,theta;
  double bx,by,bz,kux,kuy,kuz,ax,ay,az,phi;
  double cos_2theta,k_sin_2theta,cos_phi,sin_phi,q_x,q_y,q_z;
  double delta,p_reflect,total,c1x,c1y,c1z,width,mos_sample;
  int i;

  if(vx != 0.0 && (dt = -x/vx) >= 0.0)
  {                             /* Moving towards crystal? */
    y1 = y + vy*dt;             /* Propagate to crystal plane */
    z1 = z + vz*dt;
    t1 = t + dt;
    if (z1>zmin && z1<zmax && y1>ymin && y1<ymax)
    {                           /* Intersect the crystal? */
      kix = V2K*vx;             /* Initial wave vector */
      kiy = V2K*vy;
      kiz = V2K*vz;
      /* Get reflection order and corresponding nominal scattering vector q0
         of correct length and direction. Only the order with the closest
         scattering vector is considered */
      ratio = -2*kix/mono_Q;
      order = floor(ratio + .5);
      if(order == 0.0)
        order = ratio < 0 ? -1 : 1;
      /* Order will be negative when the neutron enters from the back, in
         which case the direction of Q0 is flipped. */
      if(order < 0)
        order = -order;
      /* Make sure the order is small enough to allow Bragg scattering at the
         given neutron wavelength */
      k = sqrt(kix*kix + kiy*kiy + kiz*kiz);
      kux = kix/k;              /* Unit vector along ki */
      kuy = kiy/k;
      kuz = kiz/k;
      if(order > 2*k/mono_Q)
        order--;
      if(order > 0)             /* Bragg scattering possible? */
      {
        q0 = order*mono_Q;
        q0x = ratio < 0 ? -q0 : q0;
        theta = asin(q0/(2*k)); /* Actual bragg angle */
        /* Make MC choice: reflect or transmit? */
        delta = asin(fabs(kux)) - theta;
        p_reflect = r0*exp(-kiy*kiy/(kiy*kiy + kiz*kiz)*(delta*delta)/
                           (2*mos_rms_y*mos_rms_y))*
                       exp(-kiz*kiz/(kiy*kiy + kiz*kiz)*(delta*delta)/
                           (2*mos_rms_z*mos_rms_z));
        if(rand01() < p_reflect)
        {                       /* Reflect */
          cos_2theta = cos(2*theta);
          k_sin_2theta = k*sin(2*theta);
          /* Get unit normal to plane containing ki and most probable kf */
          vec_prod(bx, by, bz, kix, kiy, kiz, q0x, 0, 0);
          NORM(bx,by,bz);
          bx *= k_sin_2theta;
          by *= k_sin_2theta;
          bz *= k_sin_2theta;
          /* Get unit vector normal to ki and b */
          vec_prod(ax, ay, az, bx, by, bz, kux, kuy, kuz);
          /* Compute the total scattering probability at this ki */
          total = 0;
          /* Choose width of Gaussian distribution to sample the angle
           * phi on the Debye-Scherrer cone for the scattered neutron.
           * The radius of the Debye-Scherrer cone is smaller by a
           * factor 1/cos(theta) than the radius of the (partial) sphere
           * describing the possible orientations of Q due to mosaicity, so we
           * start with a width 1/cos(theta) greater than the largest of
           * the two mosaics. */
          mos_sample = mos_rms_max/cos(theta);
          c1x = kix*(cos_2theta-1);
          c1y = kiy*(cos_2theta-1);
          c1z = kiz*(cos_2theta-1);
          /* Loop, repeatedly reducing the sample width until it is small
           * enough to avoid sampling scattering directions with
           * ridiculously low scattering probability.
           * Use a cut-off at 5 times the gauss width for considering
           * scattering probability as well as for integration limits
           * when integrating the sampled distribution below. */
          for(i=0; i<100; i++) {
            width = 5*mos_sample;
            cos_phi = cos(width);
            sin_phi = sin(width);
            q_x = c1x + cos_phi*ax + sin_phi*bx;
            q_y = (c1y + cos_phi*ay + sin_phi*by)/mos_rms_y;
            q_z = (c1z + cos_phi*az + sin_phi*bz)/mos_rms_z;
            /* Stop when we get near a factor of 25=5^2. */
            if(q_z*q_z + q_y*q_y < (25/(2.0/3.0))*(q_x*q_x))
              break;
            mos_sample *= (2.0/3.0);
          }
          /* Now integrate the chosen sampling distribution, using a
           * cut-off at five times sigma. */
          for(i = 0; i < (sizeof(Gauss_X)/sizeof(double)); i++)
          {
            phi = width*Gauss_X[i];
            cos_phi = cos(phi);
            sin_phi = sin(phi);
            q_x = c1x + cos_phi*ax + sin_phi*bx;
            q_y = c1y + cos_phi*ay + sin_phi*by;
            q_z = c1z + cos_phi*az + sin_phi*bz;
            p_reflect = GAUSS((q_y/q_x),0,mos_rms_y)*
                        GAUSS((q_z/q_x),0,mos_rms_z);
            total += Gauss_W[i]*p_reflect;
          }
          total *= width;
          /* Choose point on Debye-Scherrer cone. Sample from a Gaussian of
           * width 1/cos(theta) greater than the mosaic and correct for any
           * error by adjusting the neutron weight later. */
          phi = mos_sample*randnorm();
          /* Compute final wave vector kf and scattering vector q = ki - kf */
          cos_phi = cos(phi);
          sin_phi = sin(phi);
          q_x = c1x + cos_phi*ax + sin_phi*bx;
          q_y = c1y + cos_phi*ay + sin_phi*by;
          q_z = c1z + cos_phi*az + sin_phi*bz;
          p_reflect = GAUSS((q_y/q_x),0,mos_rms_y)*
                      GAUSS((q_z/q_x),0,mos_rms_z);
          x = 0;
          y = y1;
          z = z1;
          t = t1;
          vx = K2V*(kix+q_x);
          vy = K2V*(kiy+q_y);
          vz = K2V*(kiz+q_z);
          p_reflect /= total*GAUSS(phi,0,mos_sample);
          if (p_reflect <= 0) ABSORB;
          if (p_reflect > 1)  p_reflect = 1;
          p *= p_reflect;
          SCATTER;
        } /* End MC choice to reflect or transmit neutron */
      } /* End bragg scattering possible */
    } /* End intersect the crystal */
  } /* End neutron moving towards crystal */
%}

MCDISPLAY
%{
  
  multiline(5, 0.0, (double)ymin, (double)zmin,
               0.0, (double)ymax, (double)zmin,
               0.0, (double)ymax, (double)zmax,
               0.0, (double)ymin, (double)zmax,
               0.0, (double)ymin, (double)zmin);
%}

END