1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Monochromator_flat
*
* %I
*
* Written by: Kristian Nielsen
* Date: 1999
* Origin: Risoe
*
* Flat Monochromator crystal with anisotropic mosaic.
*
* %D
* Flat, infinitely thin mosaic crystal, useful as a monochromator or analyzer.
* For an unrotated monochromator component, the crystal surface lies in the Y-Z
* plane (ie. parallel to the beam).
* The mosaic is anisotropic gaussian, with different FWHMs in the Y and Z
* directions. The scattering vector is perpendicular to the surface.
*
* Example: Monochromator_flat(zmin=-0.1, zmax=0.1, ymin=-0.1, ymax=0.1, mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734)
*
* Monochromator lattice parameter
* PG 002 DM=3.355 AA (Highly Oriented Pyrolythic Graphite)
* PG 004 DM=1.677 AA
* Heusler 111 DM=3.362 AA (Cu2MnAl)
* CoFe DM=1.771 AA (Co0.92Fe0.08)
* Ge 111 DM=3.266 AA
* Ge 311 DM=1.714 AA
* Ge 511 DM=1.089 AA
* Ge 533 DM=0.863 AA
* Si 111 DM=3.135 AA
* Cu 111 DM=2.087 AA
* Cu 002 DM=1.807 AA
* Cu 220 DM=1.278 AA
* Cu 111 DM=2.095 AA
*
* %P
* INPUT PARAMETERS:
*
* zmin: [m] Lower horizontal (z) bound of crystal
* zmax: [m] Upper horizontal (z) bound of crystal
* ymin: [m] Lower vertical (y) bound of crystal
* ymax: [m] Upper vertical (y) bound of crystal
* mosaich: [arc minutes] Horizontal mosaic (in z direction) (FWHM)
* mosaicv: [arc minutes] Vertical mosaic (in y direction) (FWHM)
* r0: [1] Maximum reflectivity
* Q: [1/angstrom] Magnitude of scattering vector
*
* optional parameters
* zwidth: [m] Width of crystal, instead of zmin and zmax
* yheight: [m] Height of crystal, instead of ymin and ymax
* DM: [AA] monochromator d-spacing, instead of Q = 2*pi/DM
*
* %E
*******************************************************************************/
DEFINE COMPONENT Monochromator_flat
SETTING PARAMETERS (zmin=-0.05, zmax=0.05, ymin=-0.05, ymax=0.05,
zwidth=0, yheight=0,
mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734, DM=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef GAUSS
/* Define these arrays only once for all instances. */
/* Values for Gauss quadrature. Taken from Brice Carnahan, H. A. Luther and
James O Wilkes, "Applied numerical methods", Wiley, 1969, page 103.
This reference is available from the Copenhagen UB2 library */
double Gauss_X[] = {-0.987992518020485, -0.937273392400706, -0.848206583410427,
-0.724417731360170, -0.570972172608539, -0.394151347077563,
-0.201194093997435, 0, 0.201194093997435,
0.394151347077563, 0.570972172608539, 0.724417731360170,
0.848206583410427, 0.937273392400706, 0.987992518020485};
double Gauss_W[] = {0.030753241996117, 0.070366047488108, 0.107159220467172,
0.139570677926154, 0.166269205816994, 0.186161000115562,
0.198431485327111, 0.202578241925561, 0.198431485327111,
0.186161000115562, 0.166269205816994, 0.139570677926154,
0.107159220467172, 0.070366047488108, 0.030753241996117};
#pragma acc declare create ( Gauss_X )
#pragma acc declare create ( Gauss_W )
#define GAUSS(x,mean,rms) \
(exp(-((x)-(mean))*((x)-(mean))/(2*(rms)*(rms)))/(sqrt(2*PI)*(rms)))
#endif
%}
DECLARE
%{
double mos_rms_y; /* root-mean-square of mosaic in radians */
double mos_rms_z;
double mos_rms_max;
double mono_Q;
%}
INITIALIZE
%{
mos_rms_y = MIN2RAD*mosaicv/sqrt(8*log(2));
mos_rms_z = MIN2RAD*mosaich/sqrt(8*log(2));
mos_rms_max = mos_rms_y > mos_rms_z ? mos_rms_y : mos_rms_z;
mono_Q = Q;
if (DM != 0) mono_Q = 2*PI/DM;
if (zwidth>0) { zmax = zwidth/2; zmin=-zmax; }
if (yheight>0) { ymax = yheight/2; ymin=-ymax; }
if (zmin==zmax || ymin==ymax)
exit(fprintf(stderr, "Monochromator_flat: %s : Surface is null (zmin,zmax,ymin,ymax)\n", NAME_CURRENT_COMP));
%}
TRACE
%{
double y1,z1,t1,dt,kix,kiy,kiz,ratio,order,q0x,k,q0,theta;
double bx,by,bz,kux,kuy,kuz,ax,ay,az,phi;
double cos_2theta,k_sin_2theta,cos_phi,sin_phi,q_x,q_y,q_z;
double delta,p_reflect,total,c1x,c1y,c1z,width,mos_sample;
int i;
if(vx != 0.0 && (dt = -x/vx) >= 0.0)
{ /* Moving towards crystal? */
y1 = y + vy*dt; /* Propagate to crystal plane */
z1 = z + vz*dt;
t1 = t + dt;
if (z1>zmin && z1<zmax && y1>ymin && y1<ymax)
{ /* Intersect the crystal? */
kix = V2K*vx; /* Initial wave vector */
kiy = V2K*vy;
kiz = V2K*vz;
/* Get reflection order and corresponding nominal scattering vector q0
of correct length and direction. Only the order with the closest
scattering vector is considered */
ratio = -2*kix/mono_Q;
order = floor(ratio + .5);
if(order == 0.0)
order = ratio < 0 ? -1 : 1;
/* Order will be negative when the neutron enters from the back, in
which case the direction of Q0 is flipped. */
if(order < 0)
order = -order;
/* Make sure the order is small enough to allow Bragg scattering at the
given neutron wavelength */
k = sqrt(kix*kix + kiy*kiy + kiz*kiz);
kux = kix/k; /* Unit vector along ki */
kuy = kiy/k;
kuz = kiz/k;
if(order > 2*k/mono_Q)
order--;
if(order > 0) /* Bragg scattering possible? */
{
q0 = order*mono_Q;
q0x = ratio < 0 ? -q0 : q0;
theta = asin(q0/(2*k)); /* Actual bragg angle */
/* Make MC choice: reflect or transmit? */
delta = asin(fabs(kux)) - theta;
p_reflect = r0*exp(-kiy*kiy/(kiy*kiy + kiz*kiz)*(delta*delta)/
(2*mos_rms_y*mos_rms_y))*
exp(-kiz*kiz/(kiy*kiy + kiz*kiz)*(delta*delta)/
(2*mos_rms_z*mos_rms_z));
if(rand01() < p_reflect)
{ /* Reflect */
cos_2theta = cos(2*theta);
k_sin_2theta = k*sin(2*theta);
/* Get unit normal to plane containing ki and most probable kf */
vec_prod(bx, by, bz, kix, kiy, kiz, q0x, 0, 0);
NORM(bx,by,bz);
bx *= k_sin_2theta;
by *= k_sin_2theta;
bz *= k_sin_2theta;
/* Get unit vector normal to ki and b */
vec_prod(ax, ay, az, bx, by, bz, kux, kuy, kuz);
/* Compute the total scattering probability at this ki */
total = 0;
/* Choose width of Gaussian distribution to sample the angle
* phi on the Debye-Scherrer cone for the scattered neutron.
* The radius of the Debye-Scherrer cone is smaller by a
* factor 1/cos(theta) than the radius of the (partial) sphere
* describing the possible orientations of Q due to mosaicity, so we
* start with a width 1/cos(theta) greater than the largest of
* the two mosaics. */
mos_sample = mos_rms_max/cos(theta);
c1x = kix*(cos_2theta-1);
c1y = kiy*(cos_2theta-1);
c1z = kiz*(cos_2theta-1);
/* Loop, repeatedly reducing the sample width until it is small
* enough to avoid sampling scattering directions with
* ridiculously low scattering probability.
* Use a cut-off at 5 times the gauss width for considering
* scattering probability as well as for integration limits
* when integrating the sampled distribution below. */
for(i=0; i<100; i++) {
width = 5*mos_sample;
cos_phi = cos(width);
sin_phi = sin(width);
q_x = c1x + cos_phi*ax + sin_phi*bx;
q_y = (c1y + cos_phi*ay + sin_phi*by)/mos_rms_y;
q_z = (c1z + cos_phi*az + sin_phi*bz)/mos_rms_z;
/* Stop when we get near a factor of 25=5^2. */
if(q_z*q_z + q_y*q_y < (25/(2.0/3.0))*(q_x*q_x))
break;
mos_sample *= (2.0/3.0);
}
/* Now integrate the chosen sampling distribution, using a
* cut-off at five times sigma. */
for(i = 0; i < (sizeof(Gauss_X)/sizeof(double)); i++)
{
phi = width*Gauss_X[i];
cos_phi = cos(phi);
sin_phi = sin(phi);
q_x = c1x + cos_phi*ax + sin_phi*bx;
q_y = c1y + cos_phi*ay + sin_phi*by;
q_z = c1z + cos_phi*az + sin_phi*bz;
p_reflect = GAUSS((q_y/q_x),0,mos_rms_y)*
GAUSS((q_z/q_x),0,mos_rms_z);
total += Gauss_W[i]*p_reflect;
}
total *= width;
/* Choose point on Debye-Scherrer cone. Sample from a Gaussian of
* width 1/cos(theta) greater than the mosaic and correct for any
* error by adjusting the neutron weight later. */
phi = mos_sample*randnorm();
/* Compute final wave vector kf and scattering vector q = ki - kf */
cos_phi = cos(phi);
sin_phi = sin(phi);
q_x = c1x + cos_phi*ax + sin_phi*bx;
q_y = c1y + cos_phi*ay + sin_phi*by;
q_z = c1z + cos_phi*az + sin_phi*bz;
p_reflect = GAUSS((q_y/q_x),0,mos_rms_y)*
GAUSS((q_z/q_x),0,mos_rms_z);
x = 0;
y = y1;
z = z1;
t = t1;
vx = K2V*(kix+q_x);
vy = K2V*(kiy+q_y);
vz = K2V*(kiz+q_z);
p_reflect /= total*GAUSS(phi,0,mos_sample);
if (p_reflect <= 0) ABSORB;
if (p_reflect > 1) p_reflect = 1;
p *= p_reflect;
SCATTER;
} /* End MC choice to reflect or transmit neutron */
} /* End bragg scattering possible */
} /* End intersect the crystal */
} /* End neutron moving towards crystal */
%}
MCDISPLAY
%{
multiline(5, 0.0, (double)ymin, (double)zmin,
0.0, (double)ymax, (double)zmin,
0.0, (double)ymax, (double)zmax,
0.0, (double)ymin, (double)zmax,
0.0, (double)ymin, (double)zmin);
%}
END
|