File: Pol_bender.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (557 lines) | stat: -rw-r--r-- 17,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/****************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2003, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Pol_bender
*
* %I
* Written by: Peter Christiansen
* Date: August 2006
* Origin: RISOE
*
* Polarising bender.
*
* %D
* Based on Guide_curved written by Ross Stewart.
* Models a rectangular curved guide tube with entrance centered on the Z axis.
* The entrance lies in the X-Y plane.  Draws a true depiction
* of the guide with multiple slits (but without spacers), and trajectories.
* It relies on similar physics as the Monochromator_pol.
* The reflec function and parameters are passed to this component to
* give a bigger freedom.
* The up direction is hardcoded to be along the y-axis (0, 1, 0)
*
* The guide is asummed to have half a spacer on each side:
*    slit1  slit2  slit3
*  |+     ++     ++     +|
*  |+     ++     ++     +|
*  <---------------------> xwidth
*  <------> xwidth/nslit (nslit=3)
*         <> d
*
* The reflection functions and parameters defaults as follows:
* Bot defaults to Top, Left defaults to Top, Right defaults to left.
* Down defaults to down and up defaults to up for all functions and
* Top(Up and Down) defaults to StdReflecFunc and {0.99,0.0219,6.07,2.0,0.003}
* which stands for {R0, Qc, alpha, m, W}.
*
* Example:
* Pol_bender(xwidth = 0.08, yheight = 0.08, length = 1.0, radius= 10.0,
* 	     nslit=5, d=0.0, endFlat=0, drawOption=2,
* 	     rTopUpPar={0.99, 0.0219, 6.07, 3.0, 0.003},
* 	     rTopDownPar={0.99, 0.0219, 6.07, 1.0, 0.003})
*
* See also the example instruments Test_Pol_Bender and
* Test_Pol_Bender_Vs_Guide_Curved (under tests).
*
* %BUGS
* This component has been against tested Guide_curved and found to
* give the same intensities. Gravity option has not been tested.
*
* GRAVITY: YES (when gravity is along y-axis)
*
* %P
* INPUT PARAMETERS:
*
* xwidth: [m]        Width at the guide entry 
* yheight: [m]       Height at the guide entry 
* length: [m]        length of guide along center 
* radius: [m]        Radius of curvature of the guide (+:curve left/-:right) 
* G: [m/s^2]         Gravitational constant
* nslit: [1]         Number of slits 
* d: [m]             Width of spacers (subdividing absorbing walls) 
* endFlat: [1]       If endflat>0 then entrance and exit planes are parallel. 
* rTopUpPar: [1]     Top mirror Parameters for spin up standard reflectivity function
* rTopDownPar: [1]   Top mirror Parameters for spin down standard reflectivity function
* rBotUpPar: [1]     Bottom mirror Parameters for spin up standard reflectivity function
* rBotDownPar: [1]   Bottom mirror Parameters for spin down standard reflectivity function
* rLeftUpPar: [1]    Left mirror Parameters for spin up standard reflectivity function
* rLeftDownPar: [1]  Left mirror Parameters for spin down standard reflectivity function
* rRightUpPar: [1]   Right mirror Parameters for spin up standard reflectivity function
* rRightDownPar: [1] Right mirror Parameters for spin down standard reflectivity function
* rTopUpData: [1]     Reflectivity file for top mirror, spin up 
* rTopDownData: [1]   Reflectivity file for top mirror, spin down 
* rBotUpData: [1]     Reflectivity file for bottom mirror, spin up
* rBotDownData: [1]   Reflectivity file for bottom mirror, spin down 
* rLeftUpData: [1]    Reflectivity file for left mirror, spin up
* rLeftDownData: [1]  Reflectivity file for left mirror, spin down 
* rRightUpData: [1]   Reflectivity file for right mirror, spin up
* rRightDownData: [1] Reflectivity file for right mirror, spin down 
* drawOption: [1]    1: fine(all slits/90 points per arc), 2: normal (max 20/40), 3: rough (max 5/10) 
* debug: [1]         if debug > 0 print out some internal parameters 
*
* CALCULATED PARAMETERS:
*
* localG: [m/s/s]    Gravity vector in guide reference system 
* normalXXX: [1]     Several normal vector used for defining the geometry 
* pointXXX: [1]      Several points used for defining the geometry 
* rXXXParPtr: []     Pointers to reflection parameters used with ref. functions.
*
* %L
*
* %E
*******************************************************************************/

DEFINE COMPONENT Pol_bender

SETTING PARAMETERS (xwidth, yheight, length, radius, G=9.8, int nslit=1, d=0.0, int debug=0, int endFlat=0,
vector rTopUpPar={0.99,0.0219,6.07,2.0,0.003},
vector rTopDownPar={0.99,0.0219,6.07,2.0,0.003},
vector rBotUpPar={0.99,0.0219,6.07,2.0,0.003},
vector rBotDownPar={0.99,0.0219,6.07,2.0,0.003},
vector rLeftUpPar={0.99,0.0219,6.07,2.0,0.003},
vector rLeftDownPar={0.99,0.0219,6.07,2.0,0.003},
vector rRightUpPar={0.99,0.0219,6.07,2.0,0.003},
vector rRightDownPar={0.99,0.0219,6.07,2.0,0.003},
string rTopUpData="", string rTopDownData="",string rBotUpData="",string rBotDownData="",
string rLeftUpData="", string rLeftDownData="",string rRightUpData="",string rRightDownData="",
int drawOption=1)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
  %include "pol-lib"
  %include "ref-lib"
%}

DECLARE
%{
  Coords localG;
  Coords normTopBot;
  Coords normIn;
  Coords normOut;
  Coords pointTop;
  Coords pointBot;
  Coords pointIn;
  Coords pointOut;

  t_Table rTopUpTable;
  t_Table rTopDownTable;
  t_Table rBotUpTable;
  t_Table rBotDownTable;
  t_Table rLeftUpTable;
  t_Table rLeftDownTable;
  t_Table rRightUpTable;
  t_Table rRightDownTable;
  int useTables;
%}

INITIALIZE
%{
  double angle;

  if(strlen(rTopUpData) && strcmp(rTopUpData,"NULL")){
    useTables=1;
    /*if rUpTopData is set assume we'll be usning tabled data for all reflectivities*/
    if (Table_Read(&rTopUpTable, rTopUpData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rTopUpData);
      exit(1);
    }
    if (Table_Read(&rTopDownTable, rTopDownData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rTopDownData);
      exit(1);
    }
    if (Table_Read(&rBotUpTable, rBotUpData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rBotUpData);
      exit(1);
    }
    if (Table_Read(&rBotDownTable, rBotDownData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rBotDownData);
      exit(1);
    }
    if (Table_Read(&rLeftUpTable, rLeftUpData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rLeftUpData);
      exit(1);
    }
    if (Table_Read(&rLeftDownTable, rLeftDownData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rLeftDownData);
      exit(1);
    }
    if (Table_Read(&rRightUpTable, rRightUpData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rRightUpData);
      exit(1);
    }
    if (Table_Read(&rRightDownTable, rRightDownData, 1) <= 0) {
      fprintf(stderr,"Pol_bender: %s: can not read file %s\n",NAME_CURRENT_COMP, rRightDownData);
      exit(1);
    }
  }
  if ((xwidth<=0) || (yheight <= 0) || (length<=0) || (radius==0)) {
    fprintf(stderr, "Pol_bender: %s: NULL or negative length scale!\n"
	    "ERROR      (xwidth,yheight,length, radius). Exiting\n",
	    NAME_CURRENT_COMP);
    exit(1);
  }

  if (drawOption<1 || drawOption>3) {
    fprintf(stderr, "Pol_bender: %s: drawOption %ld not supported. Exiting.\n",
	    NAME_CURRENT_COMP, drawOption);
    exit(1);
  }

  if (mcgravitation) {

    localG = rot_apply(ROT_A_CURRENT_COMP, coords_set(0,-GRAVITY,0));
    fprintf(stdout,"Pol_bender %s: Gravity is on!\n",
	    NAME_CURRENT_COMP);
    if (localG.x!=0 || localG.z!=0)
      fprintf(stderr,"WARNING: Pol_Bender: %s: "
	      "This component only gives correct resulta with gravitation,\n"
	      "when gravity is strictly along the y-axis!\n",
	      NAME_CURRENT_COMP);

  } else
    localG = coords_set(0, 0, 0);

  // To be able to handle the situation properly where a component of
  // the gravity is along the z-axis we also define entrance (in) and
  // exit (out) planes

  angle = length/radius;
  normIn    = coords_set(0, 0, 1);
  if (endFlat)
    normOut   = coords_set(0, 0, 1);
  else
    normOut   = coords_set(sin(angle), 0, cos(angle));
  pointIn   = coords_set(0, 0, 0);
  pointOut  = coords_set(radius-radius*cos(angle), 0, radius*sin(angle));

  // Top and bot plane (+y dir) can be spanned by (1, 0, 0) & (0, 0, 1)
  // and the top point (0, yheight/2, 0) and bot point (0, -yheight/2, 0)
  // A normal vector is (0, 1, 0)
  normTopBot  = coords_set(0, 1, 0);
  pointTop = coords_set(0, yheight/2, 0);
  pointBot = coords_set(0, -yheight/2, 0);

%}

TRACE
%{
  const double whalf  = 0.5*xwidth; /* half width of guide */
  const double hhalf  = 0.5*yheight; /* half height of guide */
  const double z_off  = radius*sin(length/radius); /* z-comp of guide length */
  const double dThreshold = 1e-10; /* distance threshold */
  const double tThreshold = dThreshold/sqrt(vx*vx + vy*vy + vz*vz);
  double angle_z_vout;       /* angle between z-axis and v_out */

  // Variables used in the case of multiple slits
  const double slitWidth = xwidth/nslit; // slitwidth
  const double spacerhalf  = 0.5*d; /* half width of spacers */
  int slitHit;                 // decide which slit is hit
  double posInSlit;            // position in slit

  double t11, t12, t21, t22, theta, alpha, endtime, phi;
  int i_bounce;
  int nerr=0;

  // Pol variables
  double FN, FM, Rup, Rdown, weight;

  double Rleft;  /* radius of curvature of left mirror */
  double Rright; /* radius of curvature of right mirror */
  double absR = fabs(radius);
  double sign = 1;
  if(radius<0)
    sign = -1;

  /* Propagate neutron to guide entrance. */
  PROP_Z0;
  if (!inside_rectangle(x, y, xwidth, yheight))
    ABSORB;

  if(nslit>1) {
    // check if neutron is absorbed on a spacer
    posInSlit = fmod(x+whalf, slitWidth);
    if(posInSlit <= spacerhalf ||
       posInSlit >= slitWidth-spacerhalf)
      ABSORB;

    // check which slat is hit
    slitHit = (int)((x+whalf)/slitWidth);

    // Modify R1 and R2 according to which slat was hit
    Rleft  = absR + sign*whalf - sign*(slitHit+1)*slitWidth + sign*spacerhalf;
    Rright = absR + sign*whalf - sign*slitHit*slitWidth - sign*spacerhalf;

    if(debug>0)
      printf("\nslitHit: %d/%f, Rleft: %f, Rright: %f\n",
	     slitHit, (x+whalf)/slitWidth, Rleft, Rright);
  } else { // only 1 slit

    Rleft  = absR - sign*whalf;
    Rright = absR + sign*whalf;
  }

  for(;;) {

    double tLeft, tRight, tTop, tBot, tIn, tOut, tMirror;
    double tUp, tSide, time, endtime;
    double R, Q;
    Coords vVec, xVec;
    int isPolarising;
    double vel_xz;

    isPolarising = 0;

    xVec = coords_set(x, y, z);
    vVec = coords_set(vx, vy, vz);

    solve_2nd_order(&tTop, NULL, 0.5*coords_sp(normTopBot,localG),
		    coords_sp(normTopBot, vVec),
		    coords_sp(normTopBot, coords_sub(xVec, pointTop)));

    solve_2nd_order(&tBot, NULL, 0.5*coords_sp(normTopBot,localG),
		    coords_sp(normTopBot, vVec),
		    coords_sp(normTopBot, coords_sub(xVec, pointBot)));

    solve_2nd_order(&tIn, NULL, 0.5*coords_sp(normIn,localG),
		    coords_sp(normIn, vVec),
		    coords_sp(normIn, coords_sub(xVec, pointIn)));

    solve_2nd_order(&tOut, NULL, 0.5*coords_sp(normOut,localG),
		    coords_sp(normOut, vVec),
		    coords_sp(normOut, coords_sub(xVec, pointOut)));

    /* Find itersection points with inside and outside guide walls */
    if (!cylinder_intersect(&t11, &t12 ,x - radius, y, z, vx, vy, vz, Rleft,  2*yheight)){
      /*neutron did not hit the cylinder*/
      t11=t12=0;
    }
    if (!cylinder_intersect(&t21, &t22 ,x - radius, y, z, vx, vy, vz, Rright, 2*yheight)){
      /*neutron did not hit the cylinder*/
      t21=t22=0;
    }

    /* Choose appropriate reflection time */
    tLeft  = (t11 < tThreshold) ? t12 : t11;
    tRight = (t21 < tThreshold) ? t22 : t21;

    /* Choose appropriate reflection time */
    if (tTop>tThreshold && (tTop<tBot || tBot<=tThreshold))
      tUp=tTop;
    else
      tUp=tBot;

    if (tLeft>tThreshold && (tLeft<tRight || tRight<=tThreshold))
      tSide=tLeft;
    else
      tSide=tRight;

    if (tUp>tThreshold && (tUp<tSide || tSide<=tThreshold))
      time=tUp;
    else
      time=tSide;

    if (time<=tThreshold) {
      nerr++;
      if (nerr < 10) {
        fprintf(stdout, "tTop: %e, tBot:%e, tRight: %e, tLeft: %e\n"
	      "tUp: %e, tSide: %e, time: %e\n",
	      tTop, tBot, tRight, tLeft, tUp, tSide, time);
      } else {
        fprintf(stdout, "Found 10 propagation error for this neutron, terminating!\n");
        break;
      }
    }

    /* Has neutron left the guide? */
    if (tOut>tThreshold && (tOut<tIn || tIn<=tThreshold))
      endtime=tOut;
    else
      endtime=tIn;

    if (time > endtime)
      break;

    PROP_DT(time);
    SCATTER;

    /* Find reflection surface */
    if(time==tSide) {      /* Left or right side */

      if(time==tLeft)
	R = sign*Rleft;
      else
	R = sign*Rright;

      phi   = atan(vx/vz);        /* angle of neutron trajectory */
      alpha = asin(z/R);      /* angle of guide wall */
      theta = fabs(phi - alpha);    /* angle of reflection */
      angle_z_vout = 2.0*alpha - phi;

      vel_xz = sqrt(vx*vx + vz*vz);      /* in plane velocity */
      vz    = vel_xz*cos(angle_z_vout);
      vx    = vel_xz*sin(angle_z_vout);

    } else { /* Top or Bottom wall */
      theta = fabs(atan(vy/vz));
      vy    = -vy;
    }

    /* Now compute reflectivity. */
    Q = 2.0*sin(theta)*sqrt(vx*vx + vy*vy + vz*vz)*V2K;

    // calculate reflection probability
    if(time==tTop) {
      if(useTables){
        Rup=Table_Value(rTopUpTable,Q,1);
        Rdown=Table_Value(rTopDownTable,Q,1);
      }else{
        StdReflecFunc(Q, rTopUpPar, &Rup);
        StdReflecFunc(Q, rTopDownPar, &Rdown);
      }
      if(debug>0)
          fprintf(stdout, "\tTop hit:\n");
    } else if(time==tBot) {
      if(useTables){
        Rup=Table_Value(rBotUpTable,Q,1);
        Rdown=Table_Value(rBotDownTable,Q,1);
      }else{
        StdReflecFunc(Q, rBotUpPar, &Rup);
        StdReflecFunc(Q, rBotDownPar, &Rdown);
      }
      if(debug>0)
          fprintf(stdout, "\tBot hit:\n");
    } else if(time==tRight) {
      if(useTables){
        Rup=Table_Value(rRightUpTable,Q,1);
        Rdown=Table_Value(rRightDownTable,Q,1);
      }else{
        StdReflecFunc(Q, rRightUpPar, &Rup);
        StdReflecFunc(Q, rRightDownPar, &Rdown);
      }
      if(debug>0)
          fprintf(stdout, "\tRight hit:\n");
    } else if(time==tLeft) {
      if(useTables){
        Rup=Table_Value(rLeftUpTable,Q,1);
        Rdown=Table_Value(rLeftDownTable,Q,1);
      }else{
        StdReflecFunc(Q, rLeftUpPar, &Rup);
        StdReflecFunc(Q, rLeftDownPar, &Rdown);
      }
      if(debug>0)
          fprintf(stdout, "\tLeft hit:\n");
    }
    if(Rup != Rdown) {
      isPolarising = 1;
      GetMonoPolFNFM(Rup, Rdown, &FN, &FM);
      GetMonoPolRefProb(FN, FM, sy, &weight);
    } else
      weight = Rup;

    if(debug>0)
      printf("\tlambda: %.2f AA, Q: %.4f, Rup: %.4f, Rdown: %.4f,"
	     " weight: %.4f\n",
	     2*PI/(sqrt(vx*vx + vy*vy + vz*vz)*V2K), Q,
	     Rup, Rdown, weight);

    // check that refWeight is meaningfull
    if (weight <= 0) ABSORB;
    if (weight >  1) weight =1 ;

    if(isPolarising) {
      SetMonoPolRefOut(FN, FM, weight, &sx, &sy, &sz);
      if(sx*sx+sy*sy+sz*sz>1.000001)
        fprintf(stderr,"Pol_bender: %s: Warning: polarisation |s| = %g > 1\n",
              NAME_CURRENT_COMP, sx*sx+sy*sy+sz*sz); // check that polarisation is meaningfull
    }

    p *= weight;

    if(p==0) {
      ABSORB;
      break;
    }
  }

%}

MCDISPLAY
%{
  double x1, x2, z1, z2;
  const int n = 90;
  double *xplot=malloc(n*sizeof(double));
  double *zplot=malloc(n*sizeof(double));
  int ns = 0;
  int j = 1;
  const double lengthOfGuide = sin(length/radius)*radius;
  const double slitWidth = xwidth/nslit;
  double R = 0; /* radius of arc */
  int nSlitsMax = nslit;
  int nMax      = n;

  if (lengthOfGuide<=0)
    exit(fprintf(stdout,"Pol_bender: %s: Negative guide length ! lengthOfGuide=%g\n",
	    NAME_CURRENT_COMP, lengthOfGuide));

  if (drawOption==2) {

    if(nSlitsMax>20)
      nSlitsMax = 20;
    nMax = 40;
  } else if (drawOption==3) {

    if(nSlitsMax>5)
      nSlitsMax = 5;
    nMax = 10;
  }

  

  // draw opening
  rectangle("xy", 0, 0, 0, xwidth, yheight);

  for(ns=0; ns < nSlitsMax+1; ns++) {

    // to make sure the sides are drawn properly
    if(ns==nSlitsMax && nSlitsMax<nslit)
      ns=nslit;

    // calculate x for this R
    R = radius - 0.5*xwidth + ns*slitWidth;

    for(j=0; j<nMax; j++) {

      if(endFlat) {

	if(ns==0)  // only calculate once
	  zplot[j] = j*lengthOfGuide/(double)(nMax-1);
      } else
	zplot[j] = R*sin(length/radius * (double)j/(double)(nMax-1));

      if(radius>0)
	xplot[j] = radius - sqrt(R*R - zplot[j]*zplot[j]);
      else
	xplot[j] = radius + sqrt(R*R - zplot[j]*zplot[j]);
    }

    // To be able to draw end we store some of the point values
    if(ns==0) { // first wall

      x1 = xplot[nMax-1];
      z1 = zplot[nMax-1];
    } else if(ns==nslit) { //last wall

      x2 = xplot[nMax-1];
      z2 = zplot[nMax-1];
    }

    for(j=0; j<nMax-1; j++) {
      line(xplot[j],  0.5*yheight, zplot[j], xplot[j+1],  0.5*yheight, zplot[j+1]);
      line(xplot[j], -0.5*yheight, zplot[j], xplot[j+1], -0.5*yheight, zplot[j+1]);
    }
  }

  // draw end gap
  line(x1, 0.5*yheight, z1, x2, 0.5*yheight, z2);
  line(x1, 0.5*yheight, z1, x1,-0.5*yheight, z1);
  line(x2,-0.5*yheight, z2, x2, 0.5*yheight, z2);
  line(x1,-0.5*yheight, z1, x2,-0.5*yheight, z2);
  free(xplot);free(zplot);
  %}

END