1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Refractor
*
* %I
* Written by: E. Farhi, B. Cubitt
* Date: Oct 2014
* Origin: ILL
*
* A refractor material/shape, which can be used to model e.g. lenses and prisms.
*
* %D
* Single bulk material shape that can be used as a prism or lens.
*
* NEUTRON INTERACTION PROCESSES:
* The bulk material can reflect, refract, scatter and absorb neutrons, depending
* on the material cross sections and incident angles.
*
* The refracting material is specified from its molar weight, density, coherent
* scattering cross section. The refractive index is computed as:
* n = sqrt(1-(lambda*lambda*rho*bc/PI)) is the refraction index
*
* The surface can be coated when specifying a critical wavevector Qc, with e.g.
* Qc=m*0.0219 for a super mirror coating. The mirror coating can be suppressed
* by setting Qc=0. The critical wavevector is then set to
* Qc = 4*sqrt(PI*rho*bc); with
* rho= density*6.02214179*1e23*1e-24/weight;
* bc = sqrt(fabs(sigma_coh)*100/4/PI)*1e-5;
*
* COMPONENT GEOMETRY:
* The component shape can be a sphere, box, cylinder, biconcave spherical lens
* or any other shape defined from an external OFF/PLY file.
* sphere: radius
* cylinder: radius, yheight
* box: xwidth, yheight, zdepth
* OFF/PLY: geometry="filename.off or ply", xwidth, yheight, zdepth (bounding box)
* lens_sphere: geometry="lens_sphere", radius, zdepth (thickness)
*
* The lens_sphere geometry is composed of two concave half spheres of same radius,
* separated with a minimal thickness zdepth along the Z axis.
*
* Optionally, you can specify the 'geometry' parameter as a OFF/PLY file name.
* The complex geometry option handles any closed non-convex polyhedra.
* It computes the intersection points of the neutron ray with the object
* transparently, so that it can be used like a regular sample object.
* It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
* Such files may be generated from XYZ data using:
* qhull < coordinates.xyz Qx Qv Tv o > geomview.off
* or
* powercrust coordinates.xyz
* and viewed with geomview or java -jar jroff.jar (see below).
*
* All geometries are centred. The bulk material fills the shape, but can be
* set 'outside' when density is given a negative value. In this case, the material
* outside the bulk is void (vacuum).
*
* Usually, you should stack more than one of these to get a significant effect
* on the neutron beam, so-called 'compound refractive lens'.
* The focal length for N lenses with focal 'f' is f/N, where f=R/(1-n)
* and R = r/2 for a spherical lens with curvature radius 'r'
*
* COMMON MATERIALS:
* Should have high coherent, and low incoherent and absorption cross sections
* Be: density=1.85, weight=9.0121, sigma_coh=7.63, sigma_inc=0.0018,sigma_abs=0.0076
* Pb: density=11.115,weight=207.2, sigma_coh=11.115,sigma_inc=0.003, sigma_abs=0.171
* Pb206: sigma_coh=10.68, sigma_inc=0 , sigma_abs=0.03
* Pb208: sigma_coh=11.34, sigma_inc=0 , sigma_abs=0.00048
* Zr: density=6.52, weight=91.224, sigma_coh=6.44, sigma_inc=0.02, sigma_abs=0.185
* Zr90: sigma_coh=5.1, sigma_inc=0 , sigma_abs=0.011
* Zr94: sigma_coh=8.4, sigma_inc=0 , sigma_abs=0.05
* Bi: density=9.78, weight=208.98, sigma_coh=9.148, sigma_inc=0.0084,sigma_abs=0.0338
* Mg: density=1.738, weight=24.3, sigma_coh=3.631, sigma_inc=0.08, sigma_abs=0.063
* MgF2: density=3.148, weight=62.3018,sigma_coh=11.74, sigma_inc=0.0816,sigma_abs=0.0822
* diamond: density=3.52, weight=12.01, sigma_coh=5.551, sigma_inc=0.001, sigma_abs=0.0035
* Quartz/silica: density=2.53, weight=60.08, sigma_coh=10.625,sigma_inc=0.0056,sigma_abs=0.1714
* Si: density=2.329, weight=28.0855,sigma_coh=2.1633,sigma_inc=0.004, sigma_abs=0.171
* Al: density=2.7, weight=26.98, sigma_coh=1.495, sigma_inc=0.0082,sigma_abs=0.231
* Ni: density=8.908, weight=58.69, sigma_coh=13.3, sigma_inc=5.2, sigma_abs=4.49
* Mn: (bc < 0) density=7.21, weight=54.94, sigma_coh=-1.75, sigma_inc=0.4, sigma_abs=13.3
* perfluoropolymer(PTFE/Teflon/CF2):
* density=2.2, weight=50.007, sigma_coh=13.584,sigma_inc=0.0026,sigma_abs=0.0227
* Organic molecules with C,O,H,F
*
* Among the most commonly available and machinable materials are MgF2, SiO2, Si, and Al.
* %P
* INPUT PARAMETERS:
*
* xwidth: [m] width of box
* yheight: [m] height of box/cylinder
* zdepth: [m] depth of box
* radius: [m] radius of sphere/cylinder
* R0: [1] Low-angle reflectivity
* Qc: [Angs-1] critical scattering vector, e.g. Qc=0.0219 for Ni coating. Set Qc=0 to use the bulk critical grazing angles.
* sigma_coh: [barn] coherent cross section of refracting material. Use negative value to indicate a negative coherent scattering length
* sigma_inc: [barn] incoherent cross section
* sigma_abs: [barn] thermal absorption cross section
* density: [g/cm3] density of the refracting material. density < 0 means the material is outside/before the shape.
* weight: [g/mol] molar mass of the refracting material
* geometry: [str] OFF/PLY geometry file name, or NULL to use simple shape A spherical bi-concave lens can be obtained with geometry="lens_sphere" and given radius and zdepth
* p_interact: [1] MC Probability for scattering the ray; otherwise transmit. Use 0 to compute true probability, or specify it as e.g. 0.05
* focus_scatter: [deg] angle in which to scatter in bulk, with probability 'p_interact'
* RMS: [Angs] root mean square wavyness of the surface
* verbose: [1] flag to display detailed component behaviour
* p_scatter: [1] flag to allow scattering in the refractor bulk
* p_reflect: [1] flag to allow reflection (grazing angle) at the surface
* p_refract: [1] flag to allow refraction at the refractor surface
*
* CALCULATED PARAMETERS:
* theta1: [deg] incoming angle to the surface
* theta2: [deg] outgoing angle to the surface
* SCATTERED: [] 0=transmitted, 1=scattered in bulk, 2=refracted, 3=reflected
*
* %L
* M. L. Goldberger et al, Phys. Rev. 71, 294 - 310 (1947)
* %L
* Sears V.F. Neutron optics. An introduction to the theory of neutron optical phenomena and their applications. Oxford University Press, 1989.
* %L
* H. Park et al. Measured operational neutron energies of compound refractive lenses. Nuclear Instruments and Methods B, 251:507-511, 2006.
* %L
* J. Feinstein and R. H. Pantell. Characteristics of the thick, compound refractive lens. Applied Optics, 42 No. 4:719-723, 2001.
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a hrefp="http://meshlab.sourceforge.net/">Meshlab</a> can view OFF and PLY files
* %L
* <a href="http://qhull.org">qhull</a> for points to OFF conversion
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a> for points to OFF conversion
* %E
*******************************************************************************/
DEFINE COMPONENT Refractor
SETTING PARAMETERS (
xwidth=0, yheight=0, zdepth=0, radius=0,
string geometry="NULL",
R0=0.99, sigma_coh=11.74, density=3.148, weight=62.3018,
sigma_inc=0, sigma_abs=0, Qc=0,
p_interact=0.05, RMS=0, focus_scatter=10, verbose=0,
p_scatter=1, p_reflect=1, p_refract=1)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "read_table-lib"
%include "interoff-lib"
%include "ref-lib"
/* wrappers to intersection routines which also return the normal vector */
int box_intersect_n(double *t0, double *t1,
double x, double y, double z,
double vx, double vy, double vz,
double dx, double dy, double dz,
double *nx, double *ny, double *nz) {
double dt=0;
int intersect = box_intersect(t0, t1, x,y,z, vx,vy,vz, dx,dy,dz);
/* determine normal vector depending on hit face */
if (intersect) {
dt = *t0 <= 0 || *t0 > *t1 ? *t1 : *t0;
if (dt < 0) intersect = 0;
}
if (intersect && dx && dy && dz) {
x += vx*dt; y += vy*dt; z += vz*dt;
/* determine hit face: difference to plane is closest to 0 */
*nx = trunc(2.002*x/dx);
*ny = trunc(2.002*y/dy);
*nz = trunc(2.002*z/dz);
}
return(intersect);
} // box_intersect_n
/* sphere: when radius < 0 we always use the further intersection point to determine the normal vector */
int sphere_intersect_n(double *t0, double *t1,
double x, double y, double z,
double vx, double vy, double vz,
double r,
double *nx, double *ny, double *nz) {
double dt=0;
int intersect = sphere_intersect(t0, t1, x,y,z, vx,vy,vz, r);
if (intersect) {
if (r >0) /* First intersection in positive time */
dt = *t0 <= 0 || *t0 > *t1 ? *t1 : *t0;
else /* always second intersection */
dt = *t1;
if (dt < 0) intersect = 0;
}
if (intersect && r) {
/* must propagate locally to determine normal vector. */
x += vx*dt; y += vy*dt; z += vz*dt;
*nx = x;
*ny = y;
*nz = z;
}
return(intersect);
} // sphere_intersect_n
int cylinder_intersect_n(double *t0, double *t1,
double x, double y, double z,
double vx, double vy, double vz,
double r, double h,
double *nx, double *ny, double *nz) {
double dt=0;
int intersect = cylinder_intersect(t0, t1,
x,y,z, vx,vy,vz, r,h);
if (intersect) {
if (r >0) /* First intersection in positive time */
dt = *t0 <= 0 || *t0 > *t1 ? *t1 : *t0;
else /* always second intersection */
dt = *t1;
if (dt < 0) intersect = 0;
}
if (intersect && r) {
/* must propagate locally to determine normal vector */
x += vx*dt; z += vz*dt;
*nx = x;
*ny = 0; /* cylinder is vertical */
*nz = z;
}
return(intersect);
} // cylinder_intersect_n
// two sphere separated with a given thickness
int lens_sphere_intersect_n(double *t0, double *t1,
double x, double y, double z,
double vx, double vy, double vz,
double r, double dz,
double *nx, double *ny, double *nz) {
/* two spherical lenses, concave, with given radius, thickness=zdepth at meniscus,
plus cross section=xwidth*yheight */
int intersect1 = 0, intersect2 = 0;
double nx1=0,nx2=0,ny1=0,ny2=0,nz1=0,nz2=0;
double t2=0,t3=0;
*t0=*t1=0;
intersect1 = sphere_intersect_n(t0, t1, x,y,z+r+dz/2,
vx,vy,vz, -r, &nx1,&ny1,&nz1); /* -r: use the further intersection with sphere */
intersect2 = sphere_intersect_n(&t2, &t3, x,y,z-r-dz/2,
vx,vy,vz, r, &nx2,&ny2,&nz2);
/* usual case with 4 intersections: return t1 and t2 */
if (intersect1 || intersect2) {
if (intersect1) *t0=*t1;
if (intersect2) *t1= t2;
}
if (!intersect1 && !intersect2)
return(0);
if (!intersect1 || !intersect2) {
if (!intersect1) {
/* intersection with the 2st sphere: return t2 and some other external
intersection (container box entrance) t0 */
intersect1 = box_intersect_n(t0,&t3, x,y,z, vx,vy,vz,
2*r, 2*r, 2*r+dz, &nx1,&ny1,&nz1);
} else {
/* intersection with the 1st sphere: return t1 and some other external
intersection (container box exit) t3 */
intersect2 = box_intersect_n(&t2,t1, x,y,z, vx,vy,vz,
2*r, 2*r, 2*r+dz, &nx2,&ny2,&nz2);
}
}
/* the normal vector corresponds to the first forward intersection */
if (intersect1 || intersect2) {
if (*t0 < 0) {
*nx = nx2; *ny = ny2; *nz = nz2;
} else {
*nx = nx1; *ny = ny1; *nz = nz1;
}
}
/* no intersection: use intersection with container box */
return(intersect1+intersect2);
} // lens_sphere_intersect_n
/* Surface_wavyness: function to rotate normal vector around axis for roughness
* with specified tilt angle (rad)
* RETURNS: rotated nx,ny,nz coordinates
*/
#pragma acc routine
void Surface_wavyness(double *nx, double *ny, double *nz, double tilt, _class_particle *_particle)
{
double nt_x, nt_y, nt_z; /* transverse vector */
double n1_x, n1_y, n1_z; /* normal vector (tmp) */
/* normal vector n_z = [ 0,1,0], n_t = n x n_z; */
vec_prod(nt_x,nt_y,nt_z, *nx,*ny,*nz, 0,1,0);
/* rotate n with angle wav_z around n_t -> n1 */
tilt /= (sqrt(8*log(2)))*randnorm();
rotate(n1_x,n1_y,n1_z, *nx,*ny,*nz, tilt, nt_x,nt_y,nt_z);
/* rotate n1 with angle phi around n -> nt */
rotate(nt_x,nt_y,nt_z, n1_x,n1_y,n1_z, 2*PI*rand01(), *nx,*ny,*nz);
*nx=nt_x;
*ny=nt_y;
*nz=nt_z;
}
%}
DECLARE
%{
double rho;
double bc;
off_struct offdata;
double mean_n;
double events;
double theta1;
double theta2;
%}
INITIALIZE
%{
mean_n=0; events=0;
theta1=0; theta2=0;
/* set geometry from input geometry parameters */
if (!geometry || !strlen(geometry) || !strcmp(geometry, "NULL") || !strcmp(geometry, "0")) {
if (radius && yheight && !xwidth) strcpy(geometry, "cylinder");
else if (xwidth && yheight && zdepth && !radius) strcpy(geometry, "box");
else if (radius && !yheight && !xwidth && !zdepth) strcpy(geometry, "sphere");
} else if (radius && zdepth && !strcmp(geometry, "lens_sphere")) {
/* NOP: OK */
} else if (strcmp(geometry, "NULL") && strcmp(geometry, "0") && xwidth && yheight && zdepth) {
#ifndef USE_OFF
fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
exit(-1);
#else
/* off/ply case */
if (!off_init(geometry, xwidth, yheight, zdepth, 0, &offdata))
exit(printf("Refractor: %s: FATAL: invalid OFF/PLY geometry specification for file '%s'.\n",
NAME_CURRENT_COMP, geometry));
#endif
}
else exit(printf("Refractor: %s: FATAL: invalid geometry specification.\n"
" Check geometry,xwidth,yheight,zdepth,radius\n",
NAME_CURRENT_COMP));
/* compute refraction parameters, if needed */
if (density==0 || weight<=0)
exit(printf("Refractor: %s: FATAL: invalid material density or molar weight: density=%g weight=%g\n",
NAME_CURRENT_COMP, density, weight));
rho= fabs(density)*6.02214179*1e23*1e-24/weight; /* per at/Angs^3 */
if (sigma_coh==0)
exit(printf("Refractor: %s: FATAL: invalid material coherent cross section: sigma_coh=%g\n",
NAME_CURRENT_COMP, sigma_coh));
bc=sqrt(fabs(sigma_coh)*100/4/PI)*1e-5; /* bound coherent scattering length */
if (sigma_coh<0) bc *= -1;
/* use bulk to compute reflectivity critical angle/wavevector */
if (Qc <=0)
Qc = 4*sqrt(PI*rho*fabs(bc));
MPI_MASTER(
printf("Refractor: %s: rho.bc=%g [10-6 Angs-2] Qc=%g [Angs-1]. geometry=%s\n",
NAME_CURRENT_COMP, rho*bc*1e6, Qc, geometry);
);
%}
TRACE
%{
int intersect = 0;
int iterations= 0;
char event[256];
theta1=theta2=0;
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
do {
double nx=0, ny=0, nz=0;
double t0=0, t1=0, dt=0;
intersect = 0;
iterations++;
#ifndef OPENACC
strcpy(event, " ");
#endif
/* determine intersection times and normal vector with geometry */
if (!strcmp(geometry, "sphere")) {
intersect = sphere_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
radius, &nx,&ny,&nz);
} else if (!strcmp(geometry, "lens_sphere")) {
intersect = lens_sphere_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
radius, zdepth, &nx,&ny,&nz);
} else if (!strcmp(geometry, "cylinder")) {
intersect = cylinder_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
radius, yheight, &nx,&ny,&nz);
} else if (!strcmp(geometry, "box")) {
intersect = box_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
xwidth, yheight, zdepth, &nx,&ny,&nz);
}
#ifdef USE_OFF
else if (geometry && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
Coords n0, n1;
intersect = off_intersect(&t0, &t1, &n0, &n1, x, y, z, vx, vy, vz, 0, 0, 0, thread_offdata );
if (intersect) {
coords_get(t0 <= 0 || t0 > t1 ? n1 : n0, &nx, &ny, &nz);
}
}
#endif
if (intersect) {
if (t1 < t0) { double tmp=t0; t0=t1; t1=tmp; }
dt = t0 <= 1e-10 ? t1 : t0; /* full propagation time inside geometry */
if (dt < 0) dt=0;
}
if (dt<=0) break;
#ifndef OPENACC
strcpy(event, "none");
#endif
if (verbose)
printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(intersect) %s\n",
NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event);
/* scattering/absorption in bulk, refraction/reflection at interface */
if (intersect) {
char scatter_me=0, refract_me=0;
double my_t=0, d_path=0;
double v=0,lambda=0;
char inbulk = t0 < 0 && t1 > 0;
/* when density is given negative, we assume bulk refractive material is
'outside' or 'before' the shape */
if (density < 0) inbulk = !inbulk;
v = sqrt(vx*vx+vy*vy+vz*vz);
if (!v) ABSORB;
lambda = 3956.0032/v;
d_path = v*dt; /* full length in material */
/* compute probability to scatter/absorb inside bulk */
if (inbulk) { /* scatter inside bulk */
double ws = 0;
double p_trans= 0, p_scatt=0, mc_trans=0, mc_scatt=0;
int flag = 0;
double my_a_v = (rho * 100 * sigma_abs);
double my_a = my_a_v*2200/v;
double my_s = rho * 100 *(sigma_inc+sigma_coh);
my_t = my_a + my_s;
ws = my_s/my_t; /* (inc+coh)/(inc+coh+abs) */
/* Proba of transmission along length d_path */
p_trans = exp(-my_t*d_path);
p_scatt = 1 - p_trans;
flag = 0; /* flag used for propagation to exit point before ending */
/* are we next to the exit ? probably no scattering (avoid rounding errors) */
if (my_s*d_path <= 4e-7) {
flag = 1; /* No interaction before the exit */
}
/* force a given fraction of the beam to scatter */
if (p_interact>0 && p_interact<=1) {
/* we force a portion of the beam to interact */
/* This is used to improve statistics on single scattering (and multiple) */
mc_trans = 1-p_interact;
} else {
mc_trans = p_trans; /* 1 - p_scatt */
}
mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
if (mc_scatt <= 0 || mc_scatt>1) flag=1;
/* MC choice: Interaction or transmission ? */
scatter_me = !flag && ws && p_scatt && mc_scatt > 0 && (mc_scatt >= 1 || rand01() < mc_scatt);
/* account for absorption and retain scattered fraction */
/* we have chosen portion mc_scatt of beam instead of p_scatt, so we compensate */
if (scatter_me)
p *= ws * fabs(p_scatt/mc_scatt);
else if (p_trans && mc_trans)
p *= fabs(p_trans/mc_trans); /* attenuate beam by portion which is scattered (and left along) */
if (verbose)
printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(inbulk) %s scatter_me=%i\n",
NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event, scatter_me);
} /* if inbulk */
/* handle absorption and scattering in material */
/* req: my_t, d_path, focus_ah, focus_aw */
if (p_scatter && scatter_me) {
double dl=0, solid_angle=0;
double vx2=0, vy2=0, vz2=0;
if (my_t*d_path < 1e-6){
/* For very weak scattering, use simple uniform sampling of scattering
point to avoid rounding errors. */
dl = rand0max(d_path); /* length */
} else {
double a = rand0max((1 - exp(-my_t*d_path)));
dl = -log(1 - a) / my_t; /* length */
}
PROP_DT(dl/v); dt = 0; // we propagate in the bulk
SCATTER; /* 1 */
/* scatter randomly in cone to take into account material sigma */
randvec_target_circle(&vx2, &vy2, &vz2,
&solid_angle, vx,vy,vz, focus_scatter*DEG2RAD);
vx=vx2; vy=vy2; vz=vz2;
if (solid_angle) {
p *= solid_angle/4/PI;
NORM(vx, vy, vz);
vx*=v; vy*=v; vz*=v; /* scattering is elastic */
}
/* force to recompute intersection with new neutron direction/position */
refract_me = 0;
#ifndef OPENACC
strcpy(event, "scatter");
#endif
if (verbose)
printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(scatter) %s\n",
NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dl/v, event);
} else {
refract_me = 1;
} /* if scatter */
if ((p_refract||p_reflect) && refract_me) { // refract or reflect on the surface
double n=0; /* refractive index */
double n1=0, n2=0;
double q=0, R=0;
double par[] = {R0, Qc, 6.0, 1.0, 1.0/300.0};
/* propagate to surface */
PROP_DT(dt); dt=0;
SCATTER; SCATTER; /* 2 */
/* compute refraction index */
n = sqrt(1-(lambda*lambda*rho*bc/PI));
mean_n += n;
events++;
/* compute incoming angle */
if (inbulk) { n1=n; n2=1; } /* from bulk to void */
else { n1=1; n2=n; } /* from void to bulk */
/* compute reflectivity */
q = fabs(2*vz*V2Q);
/* Reflectivity (see component Guide). */
StdReflecFunc(q, par, &R);
/* tilt normal vector for roughness, in cone theta_RMS */
NORM(nx,ny,nz);
/* cone angle from RMS roughness = atan(2*RMS/lambda) */
if (RMS>0) Surface_wavyness(&nx, &ny, &nz, atan(2*RMS/lambda), _particle);
/* Snell-Descartes formula for refraction n1 sin(theta1) = n2 sin(theta2) */
/* https://en.wikipedia.org/wiki/Snell's_law */
Coords N = coords_set(nx,ny,nz); // normal vector to surface
Coords V = coords_set(vx,vy,vz); // incoming velocity
Coords I = coords_scale(V, 1/v); // normalised ray = v/|v|
// theta1: incident angle to the surface normal
double cos_theta1 = -coords_sp(N,I); // cos(theta1) = -N.I
if (fabs(cos_theta1) > 1) ABSORB; // should never occur...
theta1 = acos(cos_theta1)*RAD2DEG;
// reflected ray: probability R
// reflected beam: I + 2cos(theta1).N
Coords I_reflect = coords_add(I, coords_scale(N, 2*cos_theta1));
// reflected velocity: I_reflect.v
Coords V_reflect = coords_scale(I_reflect, v);
// compute refracted angle theta2...
double sqr_cos_theta2 = 1-(n1/n2)*(n1/n2)*(1-cos_theta1*cos_theta1);
// now choose which one to use, and compute outgoing velocity
if (0 < sqr_cos_theta2 && sqr_cos_theta2 < 1) {
// refraction is possible
// theta2: refracted angle to the surface normal
double cos_theta2= sqrt(sqr_cos_theta2);
// select reflection (or refraction) from Monte-Carlo choice with probability R
// in this case we expect R to be small (q > Qc)
if (p_reflect && 0 < R && R < 1 && rand01() < R) {
// choose reflection from MC
theta2 = theta1;
coords_get(V_reflect, &vx, &vy, &vz);
#ifndef OPENACC
strcpy(event, "reflect");
#endif
} else if (p_refract) {
// compute refracted ray
theta2 = acos(cos_theta2)*RAD2DEG;
Coords I_refract = coords_add(coords_scale(I, n1/n2),
coords_scale(N, n1/n2*cos_theta1 + (cos_theta1 < 0 ? cos_theta2 : -cos_theta2) ));
Coords V_refract = coords_scale(I_refract, v);
coords_get(V_refract, &vx, &vy, &vz);
#ifndef OPENACC
strcpy(event, "refract");
#endif
SCATTER; /* 3 */
}
} else if (p_reflect) {
// only reflection: below total reflection
theta2 = theta1;
if (0 < R && R < 1) p *= R; // should be R0
coords_get(V_reflect, &vx, &vy, &vz);
#ifndef OPENACC
strcpy(event, "reflect");
#endif
}
/* propagate by a small time so that we leave the surface */
PROP_DT(1e-9);
if (verbose)
printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(reflect/refract) %s theta1=%g theta2=%g 1-n=%g |xy|=%g nz=%g\n",
NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event,
theta1, theta2, 1-n, sqrt(x*x+y*y), nz);
} /* if reflect/refract */
} /* if intersect */
else break;
if (verbose)
printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=%s\n",
NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event);
} while (intersect && iterations<100);
%}
FINALLY %{
/*
* The focal length for N lenses with focal 'f' is f/N, where f=R/(1-n)
* and R = r/2 for a spherical lens with curvature radius 'r'
*/
if (radius && !strcmp(geometry, "lens_sphere") ) {
double focus, R;
mean_n /= events;
R = radius/2;
focus = R/(1-mean_n);
MPI_MASTER(
printf("Refractor: %s: %s focal length f=%g [m]. Focal length for N lenses is f/N.\n"
"mean n=%g, events=%g\n", NAME_CURRENT_COMP, geometry, focus, mean_n , events);
);
}
%}
MCDISPLAY
%{
/* show geometry */
if (!strcmp(geometry, "sphere")) {
circle("xy", 0, 0, 0, radius);
circle("xz", 0, 0, 0, radius);
circle("yz", 0, 0, 0, radius);
} else if (!strcmp(geometry, "cylinder")) {
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
} else if (!strcmp(geometry, "box")) {
box(0,0,0, xwidth, yheight, zdepth,0, 0, 1, 0);
} else if (!strcmp(geometry, "lens_sphere")) {
// sphere: x^2+y^2+z^2=radius. In 2D: radius^2=z^2+r^2
int index;
for (index=0; index<=3; index++) {
double z=radius*(index == 3 ? 0.95 : index/3.0);
double r=sqrt(radius*radius-z*z);
circle("xy", 0, 0, z-(radius+zdepth/2), r);
circle("xy", 0, 0,-z+(radius+zdepth/2), r);
}
box(0,0,0, 2*radius, 2*radius, 2*radius+zdepth,0, 0, 1, 0);
} else if (!strcmp(geometry, "lens_parabola")) {
// parabola: z = (x^2+y^2)/4/radius. In 2D: z = r^2/4/radius
int index;
for (index=0; index<=3; index++) {
double z=radius*(index == 3 ? 0.95 : index/3.0);
double r=sqrt(z*4*radius);
circle("xy", 0, 0,-z-(zdepth/2), r);
circle("xy", 0, 0, z+(zdepth/2), r);
}
box(0,0,0, 4*radius, 4*radius, 2*radius+zdepth,0, 0, 1, 0);
} else if (geometry && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
off_display(offdata);
}
%}
END
|