File: Refractor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (716 lines) | stat: -rw-r--r-- 28,103 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Refractor
*
* %I
* Written by: E. Farhi, B. Cubitt
* Date: Oct 2014
* Origin: ILL
*
* A refractor material/shape, which can be used to model e.g. lenses and prisms.
*
* %D
* Single bulk material shape that can be used as a prism or lens.
*
* NEUTRON INTERACTION PROCESSES:
* The bulk material can reflect, refract, scatter and absorb neutrons, depending
* on the material cross sections and incident angles.
*
* The refracting material is specified from its molar weight, density, coherent
* scattering cross section. The refractive index is computed as:
*   n   = sqrt(1-(lambda*lambda*rho*bc/PI)) is the refraction index
*
* The surface can be coated when specifying a critical wavevector Qc, with e.g.
* Qc=m*0.0219 for a super mirror coating. The mirror coating can be suppressed
* by setting Qc=0. The critical wavevector is then set to
*   Qc = 4*sqrt(PI*rho*bc);                                             with
*   rho= density*6.02214179*1e23*1e-24/weight;
*   bc = sqrt(fabs(sigma_coh)*100/4/PI)*1e-5;
*
* COMPONENT GEOMETRY:
* The component shape can be a sphere, box, cylinder, biconcave spherical lens
* or any other shape defined from an external OFF/PLY file.
*   sphere:      radius
*   cylinder:    radius, yheight
*   box:         xwidth, yheight, zdepth
*   OFF/PLY:     geometry="filename.off or ply", xwidth, yheight, zdepth (bounding box)
*   lens_sphere:   geometry="lens_sphere", radius, zdepth (thickness)
*
* The lens_sphere geometry is composed of two concave half spheres of same radius,
* separated with a minimal thickness zdepth along the Z axis.
*
* Optionally, you can specify the 'geometry' parameter as a OFF/PLY file name.
*   The complex geometry option handles any closed non-convex polyhedra.
*   It computes the intersection points of the neutron ray with the object
*   transparently, so that it can be used like a regular sample object.
*   It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
*   Such files may be generated from XYZ data using:
*     qhull < coordinates.xyz Qx Qv Tv o > geomview.off
*   or
*     powercrust coordinates.xyz
*   and viewed with geomview or java -jar jroff.jar (see below).
*
* All geometries are centred. The bulk material fills the shape, but can be
* set 'outside' when density is given a negative value. In this case, the material
* outside the bulk is void (vacuum).
*
* Usually, you should stack more than one of these to get a significant effect
* on the neutron beam, so-called 'compound refractive lens'.
* The focal length for N lenses with focal 'f' is f/N, where f=R/(1-n)
*   and R = r/2   for a spherical lens with curvature radius 'r'
*
* COMMON MATERIALS:
* Should have high coherent, and low incoherent and absorption cross sections
*   Be:            density=1.85,  weight=9.0121, sigma_coh=7.63,  sigma_inc=0.0018,sigma_abs=0.0076
*   Pb:            density=11.115,weight=207.2,  sigma_coh=11.115,sigma_inc=0.003, sigma_abs=0.171
*     Pb206:                                     sigma_coh=10.68, sigma_inc=0    , sigma_abs=0.03
*     Pb208:                                     sigma_coh=11.34, sigma_inc=0    , sigma_abs=0.00048
*   Zr:            density=6.52,  weight=91.224, sigma_coh=6.44,  sigma_inc=0.02,  sigma_abs=0.185
*     Zr90:                                      sigma_coh=5.1,   sigma_inc=0    , sigma_abs=0.011
*     Zr94:                                      sigma_coh=8.4,   sigma_inc=0    , sigma_abs=0.05
*   Bi:            density=9.78,  weight=208.98, sigma_coh=9.148, sigma_inc=0.0084,sigma_abs=0.0338
*   Mg:            density=1.738, weight=24.3,   sigma_coh=3.631, sigma_inc=0.08,  sigma_abs=0.063
*   MgF2:          density=3.148, weight=62.3018,sigma_coh=11.74, sigma_inc=0.0816,sigma_abs=0.0822
*   diamond:       density=3.52,  weight=12.01,  sigma_coh=5.551, sigma_inc=0.001, sigma_abs=0.0035
*   Quartz/silica: density=2.53,  weight=60.08,  sigma_coh=10.625,sigma_inc=0.0056,sigma_abs=0.1714
*   Si:            density=2.329, weight=28.0855,sigma_coh=2.1633,sigma_inc=0.004, sigma_abs=0.171
*   Al:            density=2.7,   weight=26.98,  sigma_coh=1.495, sigma_inc=0.0082,sigma_abs=0.231
*   Ni:            density=8.908, weight=58.69,  sigma_coh=13.3,  sigma_inc=5.2,   sigma_abs=4.49
*   Mn: (bc < 0)   density=7.21,  weight=54.94,  sigma_coh=-1.75, sigma_inc=0.4,   sigma_abs=13.3
*   perfluoropolymer(PTFE/Teflon/CF2):
*                  density=2.2,   weight=50.007, sigma_coh=13.584,sigma_inc=0.0026,sigma_abs=0.0227
*   Organic molecules with C,O,H,F
*
*   Among the most commonly available and machinable materials are MgF2, SiO2, Si, and Al.
* %P
* INPUT PARAMETERS:
*
* xwidth: [m]           width of box
* yheight: [m]          height of box/cylinder
* zdepth: [m]           depth of box
* radius: [m]           radius of sphere/cylinder
* R0: [1]               Low-angle reflectivity
* Qc: [Angs-1]          critical scattering vector, e.g. Qc=0.0219 for Ni coating. Set Qc=0 to use the bulk critical grazing angles.
* sigma_coh: [barn]     coherent cross section of refracting material. Use negative value to indicate a negative coherent scattering length
* sigma_inc: [barn]     incoherent cross section
* sigma_abs: [barn]     thermal absorption cross section
* density: [g/cm3]      density of the refracting material. density < 0 means the material is outside/before the shape.
* weight: [g/mol]       molar mass of the refracting material
* geometry: [str]       OFF/PLY geometry file name, or NULL to use simple shape A spherical bi-concave lens can be obtained with geometry="lens_sphere" and given radius and zdepth
* p_interact: [1]       MC Probability for scattering the ray; otherwise transmit. Use 0 to compute true probability, or specify it as e.g. 0.05
* focus_scatter: [deg]  angle in which to scatter in bulk, with probability 'p_interact'
* RMS: [Angs]           root mean square wavyness of the surface
* verbose: [1]          flag to display detailed component behaviour
* p_scatter: [1]        flag to allow scattering in the refractor bulk
* p_reflect: [1]        flag to allow reflection (grazing angle) at the surface
* p_refract: [1]        flag to allow refraction at the refractor surface
*
* CALCULATED PARAMETERS:
* theta1: [deg]         incoming angle to the surface
* theta2: [deg]         outgoing angle to the surface
* SCATTERED: []         0=transmitted, 1=scattered in bulk, 2=refracted, 3=reflected
*
* %L
* M. L. Goldberger et al, Phys. Rev. 71, 294 - 310 (1947)
* %L
* Sears V.F. Neutron optics. An introduction to the theory of neutron optical phenomena and their applications. Oxford University Press, 1989.
* %L
* H. Park et al. Measured operational neutron energies of compound refractive lenses. Nuclear Instruments and Methods B, 251:507-511, 2006.
* %L
* J. Feinstein and R. H. Pantell. Characteristics of the thick, compound refractive lens. Applied Optics, 42 No. 4:719-723, 2001.
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a hrefp="http://meshlab.sourceforge.net/">Meshlab</a> can view OFF and PLY files
* %L
* <a href="http://qhull.org">qhull</a> for points to OFF conversion
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a> for points to OFF conversion
* %E
*******************************************************************************/

DEFINE COMPONENT Refractor

SETTING PARAMETERS (
xwidth=0, yheight=0, zdepth=0, radius=0,
string geometry="NULL",
R0=0.99, sigma_coh=11.74, density=3.148, weight=62.3018,
sigma_inc=0, sigma_abs=0, Qc=0,
p_interact=0.05, RMS=0, focus_scatter=10, verbose=0,
p_scatter=1, p_reflect=1, p_refract=1)


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{


%include "read_table-lib"
%include "interoff-lib"
%include "ref-lib"


  /* wrappers to intersection routines which also return the normal vector */
  int box_intersect_n(double *t0, double *t1,
    double x, double y, double z,
    double vx, double vy, double vz,
    double dx, double dy, double dz,
    double *nx, double *ny, double *nz) {

    double dt=0;
    int    intersect = box_intersect(t0, t1, x,y,z, vx,vy,vz, dx,dy,dz);
    /* determine normal vector depending on hit face */
    if (intersect) {
      dt = *t0 <= 0 || *t0 > *t1 ? *t1 : *t0;
      if (dt < 0) intersect = 0;
    }
    if (intersect && dx && dy && dz) {
      x += vx*dt; y += vy*dt; z += vz*dt;
      /* determine hit face: difference to plane is closest to 0 */
      *nx = trunc(2.002*x/dx);
      *ny = trunc(2.002*y/dy);
      *nz = trunc(2.002*z/dz);
    }
    return(intersect);
  } // box_intersect_n

  /* sphere: when radius < 0 we always use the further intersection point to determine the normal vector */
  int sphere_intersect_n(double *t0, double *t1,
    double x, double y, double z,
    double vx, double vy, double vz,
    double r,
    double *nx, double *ny, double *nz) {

    double dt=0;
    int    intersect = sphere_intersect(t0, t1, x,y,z, vx,vy,vz, r);
    if (intersect) {
      if (r >0) /* First intersection in positive time */
        dt = *t0 <= 0 || *t0 > *t1 ? *t1 : *t0;
      else      /* always second intersection */
        dt = *t1;
      if (dt < 0) intersect = 0;
    }
    if (intersect && r) {
      /* must propagate locally to determine normal vector. */
      x += vx*dt; y += vy*dt; z += vz*dt;
      *nx  = x;
      *ny  = y;
      *nz  = z;
    }
    return(intersect);
  } // sphere_intersect_n

  int cylinder_intersect_n(double *t0, double *t1,
    double x, double y, double z,
    double vx, double vy, double vz,
    double r, double h,
    double *nx, double *ny, double *nz) {

    double dt=0;
    int    intersect = cylinder_intersect(t0, t1,
      x,y,z, vx,vy,vz, r,h);
    if (intersect) {
      if (r >0) /* First intersection in positive time */
        dt = *t0 <= 0 || *t0 > *t1 ? *t1 : *t0;
      else      /* always second intersection */
        dt = *t1;
      if (dt < 0) intersect = 0;
    }
    if (intersect && r) {
      /* must propagate locally to determine normal vector */
      x += vx*dt; z += vz*dt;
      *nx  = x;
      *ny  = 0; /* cylinder is vertical */
      *nz  = z;
    }
    return(intersect);
  } // cylinder_intersect_n

// two sphere separated with a given thickness
int lens_sphere_intersect_n(double *t0, double *t1,
double x, double y, double z,
double vx, double vy, double vz,
double r, double dz,
double *nx, double *ny, double *nz) {
    /* two spherical lenses, concave, with given radius, thickness=zdepth at meniscus,
       plus cross section=xwidth*yheight */
    int    intersect1 = 0, intersect2 = 0;
    double nx1=0,nx2=0,ny1=0,ny2=0,nz1=0,nz2=0;
    double t2=0,t3=0;

    *t0=*t1=0;

    intersect1 = sphere_intersect_n(t0, t1, x,y,z+r+dz/2,
      vx,vy,vz, -r, &nx1,&ny1,&nz1); /* -r: use the further intersection with sphere */

    intersect2 = sphere_intersect_n(&t2, &t3, x,y,z-r-dz/2,
      vx,vy,vz, r, &nx2,&ny2,&nz2);

    /* usual case with 4 intersections: return t1 and t2 */
    if (intersect1 || intersect2) {
      if (intersect1) *t0=*t1;
      if (intersect2) *t1= t2;
    }

    if (!intersect1 && !intersect2)
      return(0);

    if (!intersect1 || !intersect2) {
      if (!intersect1) {
        /* intersection with the 2st sphere: return t2 and some other external
           intersection (container box entrance) t0 */
        intersect1 = box_intersect_n(t0,&t3, x,y,z, vx,vy,vz,
          2*r, 2*r, 2*r+dz, &nx1,&ny1,&nz1);
      } else {
        /* intersection with the 1st sphere: return t1 and some other external
           intersection (container box exit) t3 */
        intersect2 = box_intersect_n(&t2,t1, x,y,z, vx,vy,vz,
          2*r, 2*r, 2*r+dz, &nx2,&ny2,&nz2);
      }
    }

    /* the normal vector corresponds to the first forward intersection */
    if (intersect1 || intersect2) {
      if (*t0 < 0) {
        *nx = nx2; *ny = ny2; *nz = nz2;
      } else {
        *nx = nx1; *ny = ny1; *nz = nz1;
      }
    }

    /* no intersection: use intersection with container box */
    return(intersect1+intersect2);
  } // lens_sphere_intersect_n
  
  /* Surface_wavyness: function to rotate normal vector around axis for roughness
   *                 with specified tilt angle (rad)
   * RETURNS: rotated nx,ny,nz coordinates
   */
 #pragma acc routine
 void Surface_wavyness(double *nx, double *ny, double *nz, double tilt, _class_particle *_particle)
  {
    double nt_x, nt_y, nt_z;  /* transverse vector */
    double n1_x, n1_y, n1_z;  /* normal vector (tmp) */

    /* normal vector n_z = [ 0,1,0], n_t = n x n_z; */
    vec_prod(nt_x,nt_y,nt_z, *nx,*ny,*nz, 0,1,0);

    /* rotate n with angle wav_z around n_t -> n1 */
    tilt  /= (sqrt(8*log(2)))*randnorm();
    rotate(n1_x,n1_y,n1_z, *nx,*ny,*nz, tilt, nt_x,nt_y,nt_z);

    /* rotate n1 with angle phi around n -> nt */
    rotate(nt_x,nt_y,nt_z, n1_x,n1_y,n1_z, 2*PI*rand01(), *nx,*ny,*nz);

    *nx=nt_x;
    *ny=nt_y;
    *nz=nt_z;
  }
%}

DECLARE
%{
  double rho;
  double bc;
  off_struct offdata;
  double mean_n;
  double events;
  double theta1;
  double theta2;
%}

INITIALIZE
%{
  mean_n=0; events=0;
  theta1=0; theta2=0;
  /* set geometry from input geometry parameters */
  if (!geometry || !strlen(geometry) || !strcmp(geometry, "NULL") || !strcmp(geometry, "0")) {
    if (radius && yheight && !xwidth)                  strcpy(geometry, "cylinder");
    else if (xwidth && yheight && zdepth && !radius)   strcpy(geometry, "box");
    else if (radius && !yheight && !xwidth && !zdepth) strcpy(geometry, "sphere");
  } else if (radius && zdepth && !strcmp(geometry, "lens_sphere")) {
    /* NOP: OK */
  } else if (strcmp(geometry, "NULL") && strcmp(geometry, "0") && xwidth && yheight && zdepth) {
    #ifndef USE_OFF
    fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
    exit(-1);
    #else
    /* off/ply case */
    if (!off_init(geometry, xwidth, yheight, zdepth, 0, &offdata))
      exit(printf("Refractor: %s: FATAL: invalid OFF/PLY geometry specification for file '%s'.\n",
      NAME_CURRENT_COMP, geometry));
    #endif
  }
  else exit(printf("Refractor: %s: FATAL: invalid geometry specification.\n"
                   "  Check geometry,xwidth,yheight,zdepth,radius\n",
      NAME_CURRENT_COMP));

  /* compute refraction parameters, if needed */
  if (density==0 || weight<=0)
    exit(printf("Refractor: %s: FATAL: invalid material density or molar weight: density=%g weight=%g\n",
      NAME_CURRENT_COMP, density, weight));
  rho= fabs(density)*6.02214179*1e23*1e-24/weight; /* per at/Angs^3 */
  if (sigma_coh==0)
    exit(printf("Refractor: %s: FATAL: invalid material coherent cross section: sigma_coh=%g\n",
      NAME_CURRENT_COMP, sigma_coh));
  bc=sqrt(fabs(sigma_coh)*100/4/PI)*1e-5;      /* bound coherent scattering length */
  if (sigma_coh<0) bc *= -1;

  /* use bulk to compute reflectivity critical angle/wavevector */
  if (Qc <=0)
    Qc = 4*sqrt(PI*rho*fabs(bc));
  MPI_MASTER(
  printf("Refractor: %s: rho.bc=%g [10-6 Angs-2] Qc=%g [Angs-1]. geometry=%s\n",
    NAME_CURRENT_COMP, rho*bc*1e6, Qc, geometry);
  );
%}

TRACE
%{
  int    intersect = 0;
  int    iterations= 0;
  char   event[256];

  theta1=theta2=0;

  #ifdef OPENACC
  #ifdef USE_OFF
  off_struct thread_offdata = offdata;
  #endif
  #else
  #define thread_offdata offdata
  #endif
  
  do {
    double nx=0, ny=0, nz=0;
    double t0=0, t1=0, dt=0;

    intersect = 0;
    iterations++;
    #ifndef OPENACC
    strcpy(event, "                                               ");
    #endif
    /* determine intersection times and normal vector with geometry */
    if (!strcmp(geometry, "sphere")) {
      intersect = sphere_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
        radius, &nx,&ny,&nz);
    } else if (!strcmp(geometry, "lens_sphere")) {
      intersect = lens_sphere_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
        radius, zdepth, &nx,&ny,&nz);
    } else if (!strcmp(geometry, "cylinder")) {
      intersect = cylinder_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
        radius, yheight, &nx,&ny,&nz);
    } else if (!strcmp(geometry, "box")) {
      intersect = box_intersect_n(&t0, &t1, x,y,z, vx,vy,vz,
        xwidth, yheight, zdepth, &nx,&ny,&nz);
    }
    #ifdef USE_OFF
    else if (geometry && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
      Coords n0, n1;
      intersect = off_intersect(&t0, &t1, &n0, &n1, x, y, z, vx, vy, vz, 0, 0, 0, thread_offdata );
      if (intersect) {
        coords_get(t0 <= 0 || t0 > t1 ? n1 : n0, &nx, &ny, &nz);
      }
    }
    #endif

    if (intersect) {
      if (t1 < t0) { double tmp=t0; t0=t1; t1=tmp; }
      dt = t0 <= 1e-10 ? t1 : t0; /* full propagation time inside geometry */
      if (dt < 0) dt=0;
    }
    if (dt<=0) break;
    #ifndef OPENACC
    strcpy(event, "none");
    #endif
    if (verbose)
    printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(intersect) %s\n",
      NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event);

    /* scattering/absorption in bulk, refraction/reflection at interface */
    if (intersect) {
      char   scatter_me=0, refract_me=0;
      double my_t=0, d_path=0;
      double v=0,lambda=0;
      char   inbulk = t0 < 0 && t1 > 0;

      /* when density is given negative, we assume bulk refractive material is
         'outside' or 'before' the shape */
      if (density < 0) inbulk = !inbulk;

      v      = sqrt(vx*vx+vy*vy+vz*vz);
      if (!v) ABSORB;
      lambda = 3956.0032/v;
      d_path = v*dt;         /* full length in material */

      /* compute probability to scatter/absorb inside bulk */
      if (inbulk) { /* scatter inside bulk */
        double ws     = 0;
        double p_trans= 0, p_scatt=0, mc_trans=0, mc_scatt=0;
        int    flag   = 0;
        double my_a_v = (rho * 100 * sigma_abs);
        double my_a   = my_a_v*2200/v;
        double my_s   = rho * 100 *(sigma_inc+sigma_coh);

        my_t = my_a + my_s;
        ws   = my_s/my_t;  /* (inc+coh)/(inc+coh+abs) */

        /* Proba of transmission along length d_path */
        p_trans = exp(-my_t*d_path);
        p_scatt = 1 - p_trans;

        flag = 0; /* flag used for propagation to exit point before ending */
        /* are we next to the exit ? probably no scattering (avoid rounding errors) */
        if (my_s*d_path <= 4e-7) {
          flag = 1;           /* No interaction before the exit */
        }

        /* force a given fraction of the beam to scatter */
        if (p_interact>0 && p_interact<=1) {
          /* we force a portion of the beam to interact */
          /* This is used to improve statistics on single scattering (and multiple) */
          mc_trans = 1-p_interact;
        } else {
          mc_trans = p_trans; /* 1 - p_scatt */
        }

        mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
        if (mc_scatt <= 0 || mc_scatt>1) flag=1;

        /* MC choice: Interaction or transmission ? */
        scatter_me = !flag && ws && p_scatt && mc_scatt > 0 && (mc_scatt >= 1 || rand01() < mc_scatt);

        /* account for absorption and retain scattered fraction */
        /* we have chosen portion mc_scatt of beam instead of p_scatt, so we compensate */
        if (scatter_me)
          p *= ws * fabs(p_scatt/mc_scatt);
        else if (p_trans && mc_trans)
          p *= fabs(p_trans/mc_trans);  /* attenuate beam by portion which is scattered (and left along) */

        if (verbose)
        printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(inbulk) %s scatter_me=%i\n",
          NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event, scatter_me);
      } /* if inbulk */

      /* handle absorption and scattering in material */
      /* req: my_t, d_path, focus_ah, focus_aw */
      if (p_scatter && scatter_me) {
        double dl=0, solid_angle=0;
        double vx2=0, vy2=0, vz2=0;

        if (my_t*d_path < 1e-6){
          /* For very weak scattering, use simple uniform sampling of scattering
             point to avoid rounding errors. */
          dl = rand0max(d_path); /* length */
        } else {
          double a = rand0max((1 - exp(-my_t*d_path)));
          dl = -log(1 - a) / my_t; /* length */
        }

        PROP_DT(dl/v); dt = 0;  // we propagate in the bulk
        SCATTER; /* 1 */

        /* scatter randomly in cone to take into account material sigma */
        randvec_target_circle(&vx2, &vy2, &vz2,
          &solid_angle, vx,vy,vz, focus_scatter*DEG2RAD);
        vx=vx2; vy=vy2; vz=vz2;

        if (solid_angle) {
          p *= solid_angle/4/PI;
          NORM(vx, vy, vz);
          vx*=v; vy*=v; vz*=v; /* scattering is elastic */
        }
        /* force to recompute intersection with new neutron direction/position */
        refract_me = 0;
	#ifndef OPENACC
        strcpy(event, "scatter");
	#endif
        if (verbose)
        printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(scatter) %s\n",
          NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dl/v, event);

      } else {
        refract_me = 1;
      } /* if scatter */

      if ((p_refract||p_reflect) && refract_me) { // refract or reflect on the surface
        double n=0; /* refractive index */
        double n1=0, n2=0;

        double q=0, R=0;
        double par[]  = {R0, Qc, 6.0, 1.0, 1.0/300.0};


        /* propagate to surface */
        PROP_DT(dt); dt=0;
        SCATTER; SCATTER; /* 2 */

        /* compute refraction index */
        n   = sqrt(1-(lambda*lambda*rho*bc/PI));
        mean_n += n;
        events++;

        /* compute incoming angle */
        if (inbulk) { n1=n; n2=1; } /* from bulk to void */
        else        { n1=1; n2=n; } /* from void to bulk */

        /* compute reflectivity */
        q = fabs(2*vz*V2Q);

        /* Reflectivity (see component Guide). */
        StdReflecFunc(q, par, &R);

        /* tilt normal vector for roughness, in cone theta_RMS */
        NORM(nx,ny,nz);
        /* cone angle from RMS roughness = atan(2*RMS/lambda) */
        if (RMS>0) Surface_wavyness(&nx, &ny, &nz, atan(2*RMS/lambda), _particle);

        /* Snell-Descartes formula for refraction n1 sin(theta1) = n2 sin(theta2) */
        /*   https://en.wikipedia.org/wiki/Snell's_law                            */
        Coords N = coords_set(nx,ny,nz);  // normal vector to surface
        Coords V = coords_set(vx,vy,vz);  // incoming velocity
        Coords I = coords_scale(V, 1/v);  // normalised ray = v/|v|

        // theta1: incident angle to the surface normal
        double cos_theta1 = -coords_sp(N,I); // cos(theta1) = -N.I

        if (fabs(cos_theta1) > 1) ABSORB; // should never occur...
        theta1 = acos(cos_theta1)*RAD2DEG;

        // reflected ray: probability R
        // reflected beam:     I + 2cos(theta1).N
        Coords I_reflect = coords_add(I, coords_scale(N, 2*cos_theta1));
        // reflected velocity: I_reflect.v
        Coords V_reflect = coords_scale(I_reflect, v);

        // compute refracted angle theta2...
        double sqr_cos_theta2 = 1-(n1/n2)*(n1/n2)*(1-cos_theta1*cos_theta1);

        // now choose which one to use, and compute outgoing velocity
        if (0 < sqr_cos_theta2 && sqr_cos_theta2 < 1) {
          // refraction is possible

          // theta2: refracted angle to the surface normal
          double cos_theta2= sqrt(sqr_cos_theta2);

          // select reflection (or refraction) from Monte-Carlo choice with probability R
          // in this case we expect R to be small (q > Qc)
          if (p_reflect && 0 < R && R < 1 && rand01() < R) {
            // choose reflection from MC
            theta2 = theta1;
            coords_get(V_reflect, &vx, &vy, &vz);
	    #ifndef OPENACC
            strcpy(event, "reflect");
	    #endif
          } else if (p_refract) {
            // compute refracted ray
            theta2 = acos(cos_theta2)*RAD2DEG;

            Coords I_refract = coords_add(coords_scale(I, n1/n2),
                                          coords_scale(N, n1/n2*cos_theta1 + (cos_theta1  < 0 ? cos_theta2 : -cos_theta2) ));
            Coords V_refract = coords_scale(I_refract, v);

            coords_get(V_refract, &vx, &vy, &vz);
	    #ifndef OPENACC
            strcpy(event, "refract");
	    #endif
            SCATTER; /* 3 */
          }
        } else if (p_reflect) {
          // only reflection: below total reflection
          theta2 = theta1;
          if (0 < R && R < 1) p *= R; // should be R0
          coords_get(V_reflect, &vx, &vy, &vz);
	  #ifndef OPENACC
          strcpy(event, "reflect");
	  #endif
        }

        /* propagate by a small time so that we leave the surface */
        PROP_DT(1e-9);

        if (verbose)
        printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=(reflect/refract) %s theta1=%g theta2=%g 1-n=%g |xy|=%g nz=%g\n",
          NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event,
          theta1, theta2, 1-n, sqrt(x*x+y*y), nz);
      } /* if reflect/refract */

    } /* if intersect */
    else break;

    if (verbose)
    printf("%s:%i: [neutron=%li iteration=%i] intersect %s=%i t0=%g t1=%g dt=%g event=%s\n",
      NAME_CURRENT_COMP, __LINE__, mcget_run_num(), iterations, geometry, intersect, t0,t1, dt, event);
  } while (intersect && iterations<100);

%}

FINALLY %{
/*
 * The focal length for N lenses with focal 'f' is f/N, where f=R/(1-n)
 *   and R = r/2   for a spherical lens with curvature radius 'r'
 */

  if (radius && !strcmp(geometry, "lens_sphere") ) {

    double focus, R;
    mean_n /= events;
    R       = radius/2;
    focus   = R/(1-mean_n);
    MPI_MASTER(
    printf("Refractor: %s: %s focal length f=%g [m]. Focal length for N lenses is f/N.\n"
        "mean n=%g, events=%g\n", NAME_CURRENT_COMP, geometry, focus, mean_n , events);
    );
  }

%}

MCDISPLAY
%{
  /* show geometry */
  if (!strcmp(geometry, "sphere")) {
    circle("xy", 0, 0, 0, radius);
    circle("xz", 0, 0, 0, radius);
    circle("yz", 0, 0, 0, radius);
  } else if (!strcmp(geometry, "cylinder")) {
    circle("xz", 0,  yheight/2.0, 0, radius);
    circle("xz", 0, -yheight/2.0, 0, radius);
    line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
    line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
    line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
    line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
  } else if (!strcmp(geometry, "box")) {
    box(0,0,0, xwidth, yheight, zdepth,0, 0, 1, 0);
  } else if (!strcmp(geometry, "lens_sphere")) {
    // sphere: x^2+y^2+z^2=radius. In 2D: radius^2=z^2+r^2
    int index;
    for (index=0; index<=3; index++) {
      double z=radius*(index == 3 ? 0.95 : index/3.0);
      double r=sqrt(radius*radius-z*z);
      circle("xy", 0, 0, z-(radius+zdepth/2), r);
      circle("xy", 0, 0,-z+(radius+zdepth/2), r);
    }
    box(0,0,0, 2*radius, 2*radius, 2*radius+zdepth,0, 0, 1, 0);
  } else if (!strcmp(geometry, "lens_parabola")) {
    // parabola: z  = (x^2+y^2)/4/radius. In 2D: z = r^2/4/radius
    int index;
    for (index=0; index<=3; index++) {
      double z=radius*(index == 3 ? 0.95 : index/3.0);
      double r=sqrt(z*4*radius);
      circle("xy", 0, 0,-z-(zdepth/2), r);
      circle("xy", 0, 0, z+(zdepth/2), r);
    }
    box(0,0,0, 4*radius, 4*radius, 2*radius+zdepth,0, 0, 1, 0);
  } else if (geometry && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
    off_display(offdata);
  }
%}
END