File: Magnon_bcc.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (586 lines) | stat: -rw-r--r-- 20,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2000 Risoe National Laboratory.
*
* %I
* Written by: Kim Lefmann
* Date: 23.10.08 - 24.07.18
* Origin: KU
*
* A sample for AFM or FM magnon scattering
* based on cross section expressions from Squires, Ch.8.2
*
* %D
* Single-cylinder shape.
* Absorption included.
* No multiple scattering.
* No incoherent scattering emitted.
* No attenuation from coherent scattering. No Bragg scattering.
* bcc crystal n.n. and n.n.n. interactions only
* Can do either FM or AFM order upon a flag
* Assume J>0 for both FM and AFM. MUST BE CHANGED FOR CONSISTENCY
* If AFM, the order is two-sublattice, e.g. the AFM Bragg ordering vectors are Q = (1 0 0) and equivalent.
* One magnon branch only
* Assume spin along z
* Possible easy axis anisotropy along z
* No external field
*
* KNOWN BUGS:
* Gives zero scattering for too large J values (for AFM J=0.362, h approx 1). Probably this is a malfunction of zridd or call thereof
* The value of the absolute scattered intensity is clearly too high. This is probably due to unit confusion. The relative intensity scaling seems about right.
* 
* Algorithm:
* 0. Always perform the scattering if possible (otherwise ABSORB)
* 1. Choose direction within a focusing solid angle
* 2. Calculate the zeros of (E_i-E_f-hbar omega(kappa)) as a function of k_f
* 3. Choose one value of k_f (always at least one is possible!)
* 4. Perform the correct weight transformation
*
* %P
* INPUT PARAMETERS:
* radius: [m]         Outer radius of sample in (x,z) plane
* yheight: [m]        Height of sample in y direction
* sigma_abs: [barns]  Absorption cross section at 2200 m/s per atom
* sigma_inc: [barns]  Incoherent scattering cross section per atom
* a: [AA]             bcc Lattice constant
* (r0: [fm]            Classical electron radius)
* (gamma: [1]           Neutron gyromagnetic moment)
* FM: [1]           Flag for whether the order if FM (0 means AFM)
* s: [1]           spin
* DW: [1]             Debye-Waller factor
* T: [K]              Temperature
* F2: [1] magnetic form factor squared
* J1:     [meV] spin-spin interaction 1 (nn)
* J2:     [meV] spin-spin interaction 2 (nnn)
* D:      [mev] single ion anisotropy
* focus_r: [m]        Radius of sphere containing target.
* focus_xw: [m]       horiz. dimension of a rectangular area
* focus_yh: [m]       vert.  dimension of a rectangular area
* focus_aw: [deg]     horiz. angular dimension of a rectangular area
* focus_ah: [deg]     vert.  angular dimension of a rectangular area
* target_x: [m]       position of target to focus at . Transverse coordinate
* target_y: [m]       position of target to focus at. Vertical coordinate
* target_z: [m]       position of target to focus at. Straight ahead.
* target_index: [1]   relative index of component to focus at, e.g. next is +1 
* verbose: [1]        flag for test printing (print if verbose==1)
*
* CALCULATED PARAMETERS:
* V_rho: [AA^-3]      Atomic density
* V_my_s: [m^-1]      Attenuation factor due to incoherent scattering
* V_my_a_v: [m^-1]    Attenuation factor due to absorbtion
*
* %L
* The test/example instrument <a href="../examples/Test_Magnon.instr">Test_Magnon.instr</a>.
*
* %E
******************************************************************************/

DEFINE COMPONENT Magnon_bcc

SETTING PARAMETERS (radius,yheight,sigma_abs,sigma_inc,a,FM=0,J1,J2,D,s,DW,T,
target_x=0, target_y=0, target_z=0, int target_index=0,F2=1,focus_r=0,focus_xw=0,focus_yh=0,focus_aw=0,focus_ah=0,verbose=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef PHONON_SIMPLE
#define PHONON_SIMPLE $Revision$
#define T2E (1/11.605)   /* Kelvin to meV */

#pragma acc routine 
double nbose(double omega, double T)  /* Other name ?? */
  {
    double nb;

    nb= (omega>0) ? 1+1/(exp(omega/(T*T2E))-1) : 1/(exp(-omega/(T*T2E))-1);
    return nb;
  }
#undef T2E
/* Routine types inspired from similar ones in Numerical Recipies */
#define UNUSED (-1.11e30)
#define MAXRIDD 60

void fatalerror_cpu(char *s)
 {
   fprintf(stderr,"%s \n",s);
   exit(1);
 }
 
#pragma acc routine 
 void fatalerror(char *s, _class_particle *_particle)
 {
   #ifndef OPENACC
   fatalerror_cpu(s);
   #else
   _particle->_absorbed=1;
   #endif
 }

 #pragma acc routine
 double omega_q(double* parms)
 {
   /* dispersion in units of meV  */
   double vi, vf, vv_x, vv_y, vv_z, vi_x, vi_y, vi_z;
   double q, qx, qy, qz, FM, J1, J2, J10, J1q, J20, J2q, D, Verbose, res_magnon, res_neutron;
   double ah, a, s, tmp, coherence_flag, coherence_fac, Omega_magnon;
   double u_sq_v_sq, uv,cos_factor;


 vf=parms[0];
 vi=parms[1];
 vv_x=parms[2];
 vv_y=parms[3];
 vv_z=parms[4];
 vi_x=parms[5];
 vi_y=parms[6];
 vi_z=parms[7];
 a   =parms[8];
 J1   =parms[9];
 J2 = parms[10];
 s = parms[11];
 D = parms[12];
 Verbose = parms[13];
 coherence_flag = parms[14];
 FM = parms[15];
 ah=a/2.0;

 qx=V2K*(vi_x-vf*vv_x);
 qy=V2K*(vi_y-vf*vv_y);
 qz=V2K*(vi_z-vf*vv_z);

 /*       q=sqrt(qx*qx+qy*qy+qz*qz); */
 J10=8*J1;
 J1q=2*J1*(cos(ah*(qx+qy+qz))+cos(ah*(qx+qy-qz))+cos(ah*(qx-qy+qz))+cos(ah*(qx-qy-qz)));
 J20=6*J2;
 J2q=2*J2*(cos(a*qx)+cos(a*qy)+cos(a*qz));
 if (FM==1)
   {
     Omega_magnon = s*((J10+J20)-(J1q+J2q))+D*(2*s+1);
   }
 else
   {
     tmp = (s*J10-s*J20+s*J2q+D*(2*s-1))*(s*J10-s*J20+s*J2q+D*(2*s-1))-s*s*J1q*J1q;
     Omega_magnon = sqrt(tmp);
   }
 res_magnon = Omega_magnon;
 res_neutron = fabs(VS2E*(vi*vi-vf*vf));
 if ((Verbose==2) && fabs(res_magnon-res_neutron)< 1e-3 && (vi>vf) )
   {
     //          printf("ah = %g, ah*(qx+qy+qz) = %g, cos = %g \n",ah,ah*(qx+qy+qz),cos(ah*(qx+qy+qz)));                                                                                                                                                                                                                               
     printf("omega_q called with parameters vf= %g, vi=%g (%g %g %g) vv=(%g, %g, %g) q=(%g %g %g)\n", vf,vi,vi_x,vi_y,vi_z,vv_x,vv_y,vv_z,qx,qy,qz);
     printf("omega_q gives: J10 = %g , J1q = %g, J20 = %g, J2q = %g, D = %g, tmp = %g \n",J10,J1q,J20,J2q,D,tmp);
     printf("in omega_q: q=(%g %g %g) omega_magnon=%g, omega_neutron=%g\n",qx,qy,qz,res_magnon,res_neutron);
     //      printf("omega_q returning %g - %g\n",res_magnon,res_neutron);                                                                                                                                                                                                                                                            
   }
 if (coherence_flag)
   {
     if (FM==1)
       return (1); // no coherence factor for a FM                                                                                                                                                                                                                                                                         
     else
       {   // This is a tricky equation, which may need a second check (KL 240718)                                                                                                                                                                                                                                             
	 u_sq_v_sq = 2*s*(2*s*J10-2*s*(J20-J2q))/Omega_magnon;
	 uv = -2*s*s*J1q/Omega_magnon;
	 cos_factor= 1; // TODO: this is probably always so (despite otherwise written in Marshall and Lowsey)                                                                                                                                                                                                               
	 coherence_fac=u_sq_v_sq + 2*cos_factor*uv;
	 return (coherence_fac);
       }
   }
 else
   return (res_magnon - res_neutron);
}

double zridd(double (*func)(double*), double x1, double x2, double *parms, double xacc, _class_particle *_particle)
    {
      int j;
      double ans, fh, fl, fm, fnew, s, xh, xl, xm, xnew;

 //     printf("zridd called with brackets %g %g acceptance %g \n",x1,x2,xacc);
 //     printf("and %i parameters %g %g %g %g %g \n",Nparms,parms[0],parms[1],parms[2],parms[3], parms[4]); 
      parms[0]=x1;
      fl=(*func)(parms);
      parms[0]=x2;
      fh=(*func)(parms);

/*      printf("Function values: %g %g \n",fl,fh); */
      if (fl*fh >= 0)
      {
        if (fl==0) return x1;
        if (fh==0) return x2;
        return UNUSED;
      }
      else
      {
        xl=x1;
        xh=x2;
        ans=UNUSED;
        for (j=1; j<MAXRIDD; j++)
        {
          xm=0.5*(xl+xh);
          parms[0]=xm;
          fm=(*func)(parms);
          s=sqrt(fm*fm-fl*fh);
          if (s == 0.0)
            return ans;
          xnew=xm+(xm-xl)*((fl >= fh ? 1.0 : -1.0)*fm/s);
          if (fabs(xnew-ans) <= xacc)
            return ans;
          ans=xnew;
          parms[0]=ans;
          fnew=(*func)(parms);
          if (fnew == 0.0) return ans;
          if (fabs(fm)*SIGN(fnew) != fm)
          {
            xl=xm;
            fl=fm;
            xh=ans;
            fh=fnew;
          }
          else
            if (fabs(fl)*SIGN(fnew) != fl)
            {
              xh=ans;
              fh=fnew;
            }
            else
              if(fabs(fh)*SIGN(fnew) != fh)
              {
                xl=ans;
                fl=fnew;
              }
              else
                fatalerror("never get here in zridd",_particle);
          if (fabs(xh-xl) <= xacc)
            return ans;
        }
        fatalerror("zridd exceeded maximum iterations",_particle);
      }
      return 0.0;  /* Never get here */
    }

#pragma acc routine 
 double zridd_gpu(double x1, double x2, double *parms, double xacc, _class_particle *_particle)
 {
   int j;
   double ans, fh, fl, fm, fnew, s, xh, xl, xm, xnew;

   parms[0]=x1;
   fl=omega_q(parms);
   parms[0]=x2;
   fh=omega_q(parms);
   if (fl*fh >= 0)
     {
       if (fl==0) return x1;
       if (fh==0) return x2;
       return UNUSED;
     }
   else
     {
       xl=x1;
       xh=x2;
       ans=UNUSED;
       for (j=1; j<MAXRIDD; j++)
	 {
	   xm=0.5*(xl+xh);
	   parms[0]=xm;
	   fm=omega_q(parms);
	   s=sqrt(fm*fm-fl*fh);
	   if (s == 0.0)
	     return ans;
	   xnew=xm+(xm-xl)*((fl >= fh ? 1.0 : -1.0)*fm/s);
	   if (fabs(xnew-ans) <= xacc)
	     return ans;
	   ans=xnew;
	   parms[0]=ans;
	   fnew=omega_q(parms);
	   if (fnew == 0.0) return ans;
	   if (fabs(fm)*SIGN(fnew) != fm)
	     {
	       xl=xm;
	       fl=fm;
	       xh=ans;
	       fh=fnew;
	     }
	   else
	     if (fabs(fl)*SIGN(fnew) != fl)
	       {
		 xh=ans;
		 fh=fnew;
	       }
	     else
	       if(fabs(fh)*SIGN(fnew) != fh)
		 {
		   xl=ans;
		   fl=fnew;
		 }
	       else
		 fatalerror("never get here in zridd", _particle);
	   if (fabs(xh-xl) <= xacc)
	     return ans;
	 }
       fatalerror("zridd exceeded maximum iterations", _particle);
     }
   return 0.0;  /* Never get here */
 }

#define ROOTACC 1e-8
 int findroots(double brack_low, double brack_mid, double brack_high, double *list, int* index, double (*f)(double*), double *parms, _class_particle *_particle)
    {
      double root, range_low=brack_mid-brack_low, range_high=brack_high-brack_mid;
      int i, steps=100;

     for (i=0; i<steps; i++)
     {
      root = zridd(f, brack_mid+range_high*i/(int)steps,
                   brack_mid+range_high*(i+1)/(int)steps,
                   (double *)parms, ROOTACC, _particle);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
        //printf("findroots found a high root: vf = %g \n",root); 
      }
     }
    
    for (i=0; i<steps; i++)
     {
      root = zridd(f, brack_low+range_low*i/(int)steps,
                   brack_low+range_low*(i+1)/(int)steps,
                   (double *)parms, ROOTACC, _particle);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
        //printf("findroots found a  low root: vf = %g \n",root);
	return(-1);
      }      
     }
     //fatalerror("exiting findroots");
     return(-1);
    }
 
#pragma acc routine 
 int findroots_gpu(double brack_low, double brack_mid, double brack_high, double *list, int* index, double *parms, _class_particle *_particle)
    {
      double root, range_low=brack_mid-brack_low, range_high=brack_high-brack_mid;
      int i, steps=100;

     for (i=0; i<steps; i++)
     {
      root = zridd_gpu(brack_mid+range_high*i/(int)steps,
                   brack_mid+range_high*(i+1)/(int)steps,
		       (double *)parms, ROOTACC, _particle);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
      }
     }
    
    for (i=0; i<steps; i++)
     {
      root = zridd_gpu(brack_low+range_low*i/(int)steps,
                   brack_low+range_low*(i+1)/(int)steps,
		       (double *)parms, ROOTACC,_particle);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
      }      
     }
    return(0);
    }



#undef UNUSED
#undef MAXRIDD
#endif
%}

DECLARE
%{
  double V_rho;
  double V_my_s;
  double V_my_a_v;
  double DV;
  double r0;
  double gamma_n;
%}
INITIALIZE
%{
  gamma_n=1.913; /* Neutron gamma factor */
  r0 = 2.818; /* Classical electron radius, units of fm */
    V_rho = 2/(a*a*a);
  V_my_s = (V_rho * 100 * sigma_inc);
  V_my_a_v = (V_rho * 100 * sigma_abs * 2200);
  DV = 0.0001;   /* Velocity change used for numerical derivative */

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index){
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }
  if (!(target_x || target_y || target_z)) {
    printf("Magnon_bcc: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }
%}
TRACE
%{
  double t0, t1;                /* Entry/exit time for cylinder */
  double v_i, v_f;               /* Neutron velocities: initial, final */
  double vx_i, vy_i, vz_i;  /* Neutron initial velocity vector */
  double dt0, dt;             /* Flight times through sample */
  double l_full;                /* Flight path length for non-scattered neutron */
  double l_i, l_o;              /* Flight path lenght in/out for scattered neutron */
  double my_a_i;                  /* Initial attenuation factor */
  double my_a_f;                  /* Final attenuation factor */
  double solid_angle;           /* Solid angle of target as seen from scattering point */
  double aim_x=0, aim_y=0, aim_z=1;   /* Position of target relative to scattering point */
  double kappa_x, kappa_y, kappa_z;   /* Scattering vector */
  double kappa2,kappa2_norm_z;             /* Square of the scattering vector - squared normalized komponent along z*/
  double bose_factor;        /* Calculated value of the Bose factor */
  double omega;              /* energy transfer */
  int nf, index;                   /* Number of allowed final velocities */
  double vf_list[7];             /* List of allowed final velocities */
  double J_factor, coherence_factor;            /* Jacobian from delta fnc.s in cross section  + AFM coherence factor */
  double f1, f2;            /* probed values of omega_q minus omega */
  double p1,p2,p3,p4,p5;    /* temporary multipliers */
  double parms[16];

  if(cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight))
  {
    if(t0 < 0)
      ABSORB; /* Neutron came from the sample or begins inside */

    /* Neutron enters at t=t0. */
    dt0 = t1-t0;                /* Time in sample */
    v_i = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v_i * dt0;   /* Length of path through sample if not scattered */
    dt = rand01()*dt0;    /* Time of scattering (relative to t0) */
    l_i = v_i*dt;                 /* Penetration in sample at scattering */
    vx_i=vx;
    vy_i=vy;
    vz_i=vz;
    PROP_DT(dt+t0);             /* Point of scattering */

    aim_x = target_x-x;         /* Vector pointing at target (e.g. analyzer) */
    aim_y = target_y-y;
    aim_z = target_z-z;

    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_sphere(&vx,&vy,&vz,&solid_angle,aim_x,aim_y,aim_z, focus_r);
    }
    NORM(vx, vy, vz);
    /*    printf("focussed direction (vx,vy,vz=(%g %g %g) \n",vx,vy,vz); */
    nf=0;
    parms[0]=-1;
    parms[1]=v_i;
    parms[2]=vx;
    parms[3]=vy;
    parms[4]=vz;
    parms[5]=vx_i;
    parms[6]=vy_i;
    parms[7]=vz_i;
    parms[8]=a;
    parms[9]=J1;
    parms[10]=J2;
    parms[11]=s;
    parms[12]=D;
    parms[13]=verbose;
    parms[14]=0;
    parms[15]=FM;
#ifndef OPENACC
    findroots(0, v_i, v_i+SE2V*sqrt(8*s*fabs(J1)+6*s*fabs(J2)+s*fabs(D)), vf_list, &nf, omega_q, parms,_particle);
#else
    findroots_gpu(0, v_i, v_i+SE2V*sqrt(8*s*fabs(J1)+6*s*fabs(J2)+s*fabs(D)), vf_list, &nf, parms,_particle);
#endif

    index=(int)floor(rand01()*nf);
    //fatalerror("1 line after after call of findroots");
    /*    printf("Root index: %i %g \n", index, vf_list[index]); */

    
    if (nf>0 && index<7) {
      v_f=vf_list[index];
      int recast=0;
      /* Recast if v_f is 0 */
      while (recast < 7 && v_f < 10*FLT_EPSILON) {
	index=(int)floor(rand01()*nf);
	v_f=vf_list[index];
	recast++;
      }
      parms[0]=v_f;
      parms[14]=1; // return coherence factor
      coherence_factor = omega_q(parms);
      parms[0]=v_f-DV;
      parms[14]=0;  // return dispersion
      f1=omega_q(parms);
      parms[0]=v_f+DV;
      f2=omega_q(parms);
      J_factor = fabs(f2-f1)/(2*DV*K2V);
      /*    printf("f1,f2: %g %g , J factor %g \n",f1,f2,J_factor); */
      omega=VS2E*(v_i*v_i-v_f*v_f);
      /*    printf("nf, omega: %i %g v_i index, v_f: %g %i %g \n", nf,omega,v_i,index,v_f); */
      vx *= v_f;
      vy *= v_f;
      vz *= v_f;
      /* printf("vi= %g (vi_x,vi_y,vi_z)= (%g %g %g); vf= %g (vx,vy,vz)=(%g %g %g) \n",
         v_i,vx_i,vy_i,vz_i,v_f,vx,vy,vz); */
      kappa_x=V2K*(vx_i-vx);
      kappa_y=V2K*(vy_i-vy);
      kappa_z=V2K*(vz_i-vz);
      kappa2=kappa_z*kappa_z+kappa_y*kappa_y+kappa_x*kappa_x;
      kappa2_norm_z=kappa_z*kappa_z/kappa2;

      //printf("State before cyl interscect: \n xyz  %g %g %g \n vxyz %g %g %g and vf %g\n nf %i recast: %i \n",x,y,z,vx,vy,vz,v_f,nf,recast);
      if(cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight)) {
	dt = t1;
	l_o = v_f*dt;
	
	my_a_i = V_my_a_v/v_i;
	my_a_f = V_my_a_v/v_f;
	bose_factor=nbose(omega,T);
	p1 = exp(-(V_my_s*(l_i+l_o)+my_a_i*l_i+my_a_f*l_o)); /* Absorption factor */
	p2 = nf*solid_angle*l_full*V_rho/(4*PI);     /* Focusing factors; assume random choice of n_f possibilities */
	p3 = gamma_n*gamma_n*r0*r0*(v_f/v_i)*F2*DW*s*s*(1+kappa2_norm_z)*bose_factor;   
	/* Cross section factor approx */
	p4 = 2*VS2E*v_f/J_factor;  /* Jacobian of delta functions in cross section */
	p5 = coherence_factor;  /* Cross section factor 2 */
	p *= p1*p2*p3*p4*p5;
	SCATTER;
	
	if (verbose==1){    printf("p factors : %g %g %g %g %g Omega: %g \n", p1, p2, p3, p4, p5, omega);
	  printf("J_factor %g l_full %g, v_f/v_i %g, DW %g, kappa2 %g, bose_factor%g, fabs(omega) %g, coherence %g \n",
		 J_factor, l_full, v_f/v_i, DW, kappa2, bose_factor, fabs(omega), coherence_factor); 
	}
      } else {	  /* ??? did not hit cylinder */
	  ABSORB; // Simply absorb if we can not hit, no fatal errors. (Typically indication of v_f==0)
	  //fatalerror("FATAL ERROR: Did not hit cylinder from inside.\n", _particle);
      }

    } else {
      ABSORB; // Findroots returned junk
    }
  } /* else transmit: Neutron did not hit the sample */
%}

MCDISPLAY
%{
  magnify("xyz");
  circle("xz", 0,  yheight/2.0, 0, radius);
  circle("xz", 0, -yheight/2.0, 0, radius);
  line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
  line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
  line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
  line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
%}

END