File: Phonon_simple.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (476 lines) | stat: -rw-r--r-- 14,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2000 Risoe National Laboratory.
*
* %I
* Written by: Kim Lefmann
* Date: 04.02.04
* Origin: Risoe
* Modified by: MB,    15.01.24   (removed extra K2V factor in weight, reduced scattered intensity significantly)
*
* A sample for phonon scattering based on cross section expressions from Squires, Ch.3.
* Possibility for adding an (unphysical) bandgap.
*
* %D
* Single-cylinder shape.
* Absorption included.
* No multiple scattering.
* No incoherent scattering emitted.
* No attenuation from coherent scattering. No Bragg scattering.
* fcc crystal n.n. interactions only
* One phonon branch only -> phonon polarization not accounted for.
* Bravais lattice only. (i.e. just one atom per unit cell)
*
* Algorithm:
* 0. Always perform the scattering if possible (otherwise ABSORB)
* 1. Choose direction within a focusing solid angle
* 2. Calculate the zeros of (E_i-E_f-hbar omega(kappa)) as a function of k_f
* 3. Choose one value of k_f (always at least one is possible!)
* 4. Perform the correct weight transformation
*
* %P
* INPUT PARAMETERS:
* radius: [m]         Outer radius of sample in (x,z) plane
* yheight: [m]        Height of sample in y direction
* sigma_abs: [barns]  Absorption cross section at 2200 m/s per atom
* sigma_inc: [barns]  Incoherent scattering cross section per atom
* a: [AA]             fcc Lattice constant
* b: [fm]             Scattering length
* M: [a.u.]           Atomic mass
* c: [meV/AA^(-1)]    Velocity of sound
* DW: [1]             Debye-Waller factor
* T: [K]              Temperature
* focus_r: [m]        Radius of sphere containing target.
* focus_xw: [m]       horiz. dimension of a rectangular area
* focus_yh: [m]       vert.  dimension of a rectangular area
* focus_aw: [deg]     horiz. angular dimension of a rectangular area
* focus_ah: [deg]     vert.  angular dimension of a rectangular area
* target_x: [m]       position of target to focus at . Transverse coordinate
* target_y: [m]       position of target to focus at. Vertical coordinate
* target_z: [m]       position of target to focus at. Straight ahead.
* target_index: [1]   relative index of component to focus at, e.g. next is +1 
* gap: [meV]          Bandgap energy (unphysical)
*
* CALCULATED PARAMETERS:
* V_rho: [AA^-3]      Atomic density
* V_my_s: [m^-1]      Attenuation factor due to incoherent scattering
* V_my_a_v: [m^-1]    Attenuation factor due to absorbtion
*
* %L
* The test/example instrument <a href="../examples/Test_Phonon.instr">Test_Phonon.instr</a>.
*
* %E
******************************************************************************/

DEFINE COMPONENT Phonon_simple

SETTING PARAMETERS (radius,yheight,sigma_abs,sigma_inc,a,b,M,c,DW,T,
target_x=0, target_y=0, target_z=0, int target_index=0,focus_r=0,focus_xw=0,focus_yh=0,focus_aw=0,focus_ah=0, gap=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef PHONON_SIMPLE
#define PHONON_SIMPLE $Revision$
#define T2E (1/11.605)   /* Kelvin to meV */

#pragma acc routine 
double nbose(double omega, double T)  /* Other name ?? */
  {
    double nb;

    nb= (omega>0) ? 1+1/(exp(omega/(T*T2E))-1) : 1/(exp(-omega/(T*T2E))-1);
    return nb;
  }
#undef T2E
/* Routine types from Numerical Recipies book */
#define UNUSED (-1.11e30)
#define MAXRIDD 60

void fatalerror_cpu(char *s)
  {
    fprintf(stderr,"%s \n",s);
    exit(1);
  }
 
#pragma acc routine 
void fatalerror(char *s)
  {
  #ifndef OPENACC	
    fatalerror_cpu(s);
  #endif
  }

  #pragma acc routine
  double omega_q(double* parms)
    {
      /* dispersion in units of meV  */
      double vi, vf, vv_x, vv_y, vv_z, vi_x, vi_y, vi_z;
      double q, qx, qy, qz, Jq, res_phonon, res_neutron;
      double ah, a, c;
      double gap;

      vf=parms[0];
      vi=parms[1];
      vv_x=parms[2];
      vv_y=parms[3];
      vv_z=parms[4];
      vi_x=parms[5];
      vi_y=parms[6];
      vi_z=parms[7];
      a   =parms[8];
      c   =parms[9];
      gap =parms[10];
      ah=a/2.0;

      qx=V2K*(vi_x-vf*vv_x);
      qy=V2K*(vi_y-vf*vv_y);
      qz=V2K*(vi_z-vf*vv_z);
       q=sqrt(qx*qx+qy*qy+qz*qz);
      Jq=2*(cos(ah*(qx+qy))+cos(ah*(qx-qy))+cos(ah*(qx+qz))+cos(ah*(qx-qz))
             +cos(ah*(qy+qz))+cos(ah*(qy-qz)) );
      if (gap>0) {
	res_phonon=sqrt(gap*gap+(12-Jq)*(c*c)/(a*a));
      } else {
        res_phonon=c/a*sqrt(12-Jq);
      }
      res_neutron = fabs(VS2E*(vi*vi-vf*vf));

      return (res_phonon - res_neutron);
    }


double zridd(double (*func)(double*), double x1, double x2, double *parms, double xacc)
    {
      int j;
      double ans, fh, fl, fm, fnew, s, xh, xl, xm, xnew;

      parms[0]=x1;
      fl=(*func)(parms);
      parms[0]=x2;
      fh=(*func)(parms);
      if (fl*fh >= 0)
      {
        if (fl==0) return x1;
        if (fh==0) return x2;
        return UNUSED;
      }
      else
      {
        xl=x1;
        xh=x2;
        ans=UNUSED;
        for (j=1; j<MAXRIDD; j++)
        {
          xm=0.5*(xl+xh);
          parms[0]=xm;
          fm=(*func)(parms);
          s=sqrt(fm*fm-fl*fh);
          if (s == 0.0)
            return ans;
          xnew=xm+(xm-xl)*((fl >= fh ? 1.0 : -1.0)*fm/s);
          if (fabs(xnew-ans) <= xacc)
            return ans;
          ans=xnew;
          parms[0]=ans;
          fnew=(*func)(parms);
          if (fnew == 0.0) return ans;
          if (fabs(fm)*SIGN(fnew) != fm)
          {
            xl=xm;
            fl=fm;
            xh=ans;
            fh=fnew;
          }
          else
            if (fabs(fl)*SIGN(fnew) != fl)
            {
              xh=ans;
              fh=fnew;
            }
            else
              if(fabs(fh)*SIGN(fnew) != fh)
              {
                xl=ans;
                fl=fnew;
              }
              else
                fatalerror("never get here in zridd");
          if (fabs(xh-xl) <= xacc)
            return ans;
        }
        fatalerror("zridd exceeded maximum iterations");
      }
      return 0.0;  /* Never get here */
    }

#pragma acc routine 
double zridd_gpu(double x1, double x2, double *parms, double xacc)
    {
      int j;
      double ans, fh, fl, fm, fnew, s, xh, xl, xm, xnew;

      parms[0]=x1;
      fl=omega_q(parms);
      parms[0]=x2;
      fh=omega_q(parms);
      if (fl*fh >= 0)
      {
        if (fl==0) return x1;
        if (fh==0) return x2;
        return UNUSED;
      }
      else
      {
        xl=x1;
        xh=x2;
        ans=UNUSED;
        for (j=1; j<MAXRIDD; j++)
        {
          xm=0.5*(xl+xh);
          parms[0]=xm;
          fm=omega_q(parms);
          s=sqrt(fm*fm-fl*fh);
          if (s == 0.0)
            return ans;
          xnew=xm+(xm-xl)*((fl >= fh ? 1.0 : -1.0)*fm/s);
          if (fabs(xnew-ans) <= xacc)
            return ans;
          ans=xnew;
          parms[0]=ans;
          fnew=omega_q(parms);
          if (fnew == 0.0) return ans;
          if (fabs(fm)*SIGN(fnew) != fm)
          {
            xl=xm;
            fl=fm;
            xh=ans;
            fh=fnew;
          }
          else
            if (fabs(fl)*SIGN(fnew) != fl)
            {
              xh=ans;
              fh=fnew;
            }
            else
              if(fabs(fh)*SIGN(fnew) != fh)
              {
                xl=ans;
                fl=fnew;
              }
              else
                fatalerror("never get here in zridd");
          if (fabs(xh-xl) <= xacc)
            return ans;
        }
        fatalerror("zridd exceeded maximum iterations");
      }
      return 0.0;  /* Never get here */
    }

 
#define ROOTACC 1e-8

  int findroots(double brack_low, double brack_mid, double brack_high, double *list, int* index, double (*f)(double*), double *parms)
    {
      double root,range=brack_mid-brack_low;
      int i, steps=100;

     for (i=0; i<steps; i++)
     {
      root = zridd(f, brack_low+range*i/(int)steps,
                   brack_low+range*(i+1)/(int)steps,
                   (double *)parms, ROOTACC);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
      }
     }
      root = zridd(f, brack_mid, brack_high, (double *)parms, ROOTACC);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
      }
    }
  
#pragma acc routine 
  int findroots_gpu(double brack_low, double brack_mid, double brack_high, double *list, int* index, double *parms)
    {
      double root,range=brack_mid-brack_low;
      int i, steps=100;

     for (i=0; i<steps; i++)
     {
       root = zridd_gpu(brack_low+range*i/(int)steps,
                   brack_low+range*(i+1)/(int)steps,
                   (double *)parms, ROOTACC);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
      }
     }
      root = zridd_gpu(brack_mid, brack_high, (double *)parms, ROOTACC);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
      }
    }
  
#undef UNUSED
#undef MAXRIDD
#endif
%}

DECLARE
%{
  double V_rho;
  double V_my_s;
  double V_my_a_v;
  double DV;
%}
INITIALIZE
%{
  V_rho = 4/(a*a*a);
  V_my_s = (V_rho * 100 * sigma_inc);
  V_my_a_v = (V_rho * 100 * sigma_abs * 2200);
  DV = 0.001;   /* Velocity change used for numerical derivative */

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index){
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }
  if (!(target_x || target_y || target_z)) {
    printf("Phonon_simple: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }
%}
TRACE
%{
  double t0, t1;                /* Entry/exit time for cylinder */
  double v_i, v_f;               /* Neutron velocities: initial, final */
  double vx_i, vy_i, vz_i;  /* Neutron initial velocity vector */
  double dt0, dt;             /* Flight times through sample */
  double l_full;                /* Flight path length for non-scattered neutron */
  double l_i, l_o;              /* Flight path lenght in/out for scattered neutron */
  double my_a_i;                  /* Initial attenuation factor */
  double my_a_f;                  /* Final attenuation factor */
  double solid_angle;           /* Solid angle of target as seen from scattering point */
  double aim_x=0, aim_y=0, aim_z=1;   /* Position of target relative to scattering point */
  double kappa_x, kappa_y, kappa_z;   /* Scattering vector */
  double kappa2;             /* Square of the scattering vector */
  double bose_factor;        /* Calculated value of the Bose factor */
  double omega;              /* energy transfer */
  int nf, index;                   /* Number of allowed final velocities */
  double vf_list[2];             /* List of allowed final velocities */
  double J_factor;            /* Jacobian from delta fnc.s in cross section */
  double f1, f2;            /* probed values of omega_q minus omega */
  double p1,p2,p3,p4,p5;    /* temporary multipliers */
  double parms[11];
  
  if(cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight))
  {
    if(t0 < 0)
      ABSORB; /* Neutron came from the sample or begins inside */

    /* Neutron enters at t=t0. */
    dt0 = t1-t0;                /* Time in sample */
    v_i = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v_i * dt0;   /* Length of path through sample if not scattered */
    dt = rand01()*dt0;    /* Time of scattering (relative to t0) */
    l_i = v_i*dt;                 /* Penetration in sample at scattering */
    vx_i=vx;
    vy_i=vy;
    vz_i=vz;
    PROP_DT(dt+t0);             /* Point of scattering */

    aim_x = target_x-x;         /* Vector pointing at target (e.g. analyzer) */
    aim_y = target_y-y;
    aim_z = target_z-z;

    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_sphere(&vx,&vy,&vz,&solid_angle,aim_x,aim_y,aim_z, focus_r);
    }
    NORM(vx, vy, vz);
    nf=0;
      parms[0]=-1;
      parms[1]=v_i;
      parms[2]=vx;
      parms[3]=vy;
      parms[4]=vz;
      parms[5]=vx_i;
      parms[6]=vy_i;
      parms[7]=vz_i;
      parms[8]=a;
      parms[9]=c;
      parms[10]=gap;
    #ifndef OPENACC
    findroots(0, v_i, v_i+2*c*V2K/VS2E, vf_list, &nf, omega_q, parms);
    #else
    findroots_gpu(0, v_i, v_i+2*c*V2K/VS2E, vf_list, &nf, parms);
    #endif
    index=(int)floor(rand01()*nf);
    if (index<2) {
      v_f=vf_list[index];
      parms[0]=v_f-DV;
      f1=omega_q(parms);
      parms[0]=v_f+DV;
      f2=omega_q(parms);
      J_factor = fabs(f2-f1)/(2*DV);
      omega=VS2E*(v_i*v_i-v_f*v_f);
      vx *= v_f;
      vy *= v_f;
      vz *= v_f;
      kappa_x=V2K*(vx_i-vx);
      kappa_y=V2K*(vy_i-vy);
      kappa_z=V2K*(vz_i-vz);
      kappa2=kappa_z*kappa_z+kappa_y*kappa_y+kappa_x*kappa_x;
      
      if(!cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight))
	{
	  /* ??? did not hit cylinder */
	  printf("FATAL ERROR: Did not hit cylinder from inside.\n");
	  exit(1);
	}
      dt = t1;
      l_o = v_f*dt;
      
      my_a_i = V_my_a_v/v_i;
      my_a_f = V_my_a_v/v_f;
      bose_factor=nbose(omega,T);
      p1 = exp(-(V_my_s*(l_i+l_o)+my_a_i*l_i+my_a_f*l_o)); /* Absorption factor */
      p2 = nf*solid_angle*l_full*V_rho/(4*PI);     /* Focusing factors; assume random choice of n_f possibilities */
      p3 = (v_f/v_i)*DW*(kappa2*K2V*K2V*VS2E)/fabs(omega)*bose_factor;   /* Cross section factor 1 */
      p4 = 2*VS2E*v_f/J_factor;  /* Jacobian of delta functions in cross section */
      p5 = b*b/M;  /* Cross section factor 2 */
      p *= p1*p2*p3*p4*p5;
    } else {
      ABSORB; // findroots returned junk
    }
  } /* else transmit: Neutron did not hit the sample */
%}

MCDISPLAY
%{
  
  circle("xz", 0,  yheight/2.0, 0, radius);
  circle("xz", 0, -yheight/2.0, 0, radius);
  line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
  line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
  line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
  line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
%}

END