1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: TOFRes_sample
*
* %I
* Modified from Res_sample, written by: Kristian Nielsen
* Date: 1999
* Written by: KL, 10 October 2004
* Modified by KL, 20 March 2024 after input from Ryoichi Kajimoto, J-PARC
* Origin: Risoe
*
* Sample for TOF resolution function calculation.
*
* %D
* An inelastic sample with completely uniform scattering in both solid angle
* and energy. This sample is used together with the TOFRes_monitor component
* and (optionally) the mcresplot front-end to compute the resolution
* function of all time-of-flight instruments.
* The method of time focusing is used to optimize the simulations.
*
* The shape of the sample is either:
* 1. Hollow cylinder (Please note that the cylinder **must** be specified with both
* a radius and a wall-thickness!)
* 2. A massive, rectangular box specified with dimensions xwidth, yheight, zdepth.
* (i.e. **withouht** a thickness)
*
* hollow cylinder shape **must** be specified with both a radius and a wall-thickness.
* The box is
*
* The scattered neutrons will have directions towards a given target and
* detector arrival time in an interval of time_width centered on time_bin.
* This target area is default disk shaped, but may also be rectangular
* if specified focus_xw and focus_yh
* or focus_aw and focus_ah, respectively in meters and degrees.
* The target itself is either situated according to given coordinates (x,y,z),
* or setting the relative target_index of the component to focus at
* (next is +1). This target position will be set to its AT position.
* When targeting to centered components, such as spheres or cylinders,
* define an Arm component where to focus at.
*
* Example: TOFRes_sample(thickness=0.001, radius=0.01, yheight=0.04, focus_xw=0.025, focus_yh=0.025, time_bin=3e4, time_width=200, target_x=0, target_y=0, target_z=1)
*
* %P
* INPUT PARAMETERS:
*
* thickness: [m] Thickness of hollow cylinder in (x,z) plane
* radius: [m] Outer radius of hollow cylinder
* yheight: [m] vert. dimension of sample, as a height
* focus_r: [m] Radius of sphere containing target
* target_index: [1] relative index of component to focus at, e.g. next is +1
* time_bin: [us] position of time bin
* time_width: [us] width of time bin
* f: [1] Adaptive time-shortening factor
*
* Optional parameters
* xwidth: [m] horiz. dimension of sample, as a width
* zdepth: [m] depth of sample
* focus_xw: [m] horiz. dimension of a rectangular area
* focus_yh: [m] vert. dimension of a rectangular area
* focus_aw: [deg] horiz. angular dimension of a rectangular area
* focus_ah: [deg] vert. angular dimension of a rectangular area
* target_x: []
* target_y: [m] position of target to focus at
* target_z: []
* %E
*******************************************************************************/
DEFINE COMPONENT TOFRes_sample
SETTING PARAMETERS (thickness=0,radius=0.01,yheight=0.05,focus_r=0.05,
time_bin=20000, time_width=10, f=50,
target_x=0, target_y=0, target_z=.5, focus_xw=0, focus_yh=0,
focus_aw=0, focus_ah=0, xwidth=0, zdepth=0, int target_index=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
struct Res_sample_struct {
char isrect; /* true when7 sample is a box */
double distance; /* when non zero, gives rect target distance */
double aw,ah; /* rectangular angular dimensions */
double xw,yh; /* rectangular metrical dimensions */
double tx,ty,tz; /* target coords */
};
%}
/* Needed for resolution calculation */
USERVARS %{
double res_pi;
double res_ki_x;
double res_ki_y;
double res_ki_z;
double res_kf_x;
double res_kf_y;
double res_kf_z;
double res_rx;
double res_ry;
double res_rz;
%}
DECLARE
%{
struct Res_sample_struct res_struct;
char res_pi_var[20];
char res_ki_x_var[20];
char res_ki_y_var[20];
char res_ki_z_var[20];
char res_kf_x_var[20];
char res_kf_y_var[20];
char res_kf_z_var[20];
char res_rx_var[20];
char res_ry_var[20];
char res_rz_var[20];
int compindex;
%}
INITIALIZE
%{
if (!radius || !yheight) {
if (!xwidth || !yheight || !zdepth) {
exit(fprintf(stderr,"TOFRes_sample: %s: box-shaped sample has no volume (zero dimensions)\n", NAME_CURRENT_COMP));
} else {
res_struct.isrect=1;
}
} else {
res_struct.isrect=0;
if (!thickness || thickness >= radius) {
exit(fprintf(stderr,"TOFRes_sample: %s: Hollow of cylindrical sample has no volume (zero dimensions)\n", NAME_CURRENT_COMP));
}
}
/* now compute target coords if a component index is supplied */
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &res_struct.tx, &res_struct.ty, &res_struct.tz);
}
else
{ res_struct.tx = target_x; res_struct.ty = target_y; res_struct.tz = target_z; }
res_struct.distance=sqrt(res_struct.tx*res_struct.tx
+res_struct.ty*res_struct.ty+res_struct.tz*res_struct.tz);
/* different ways of setting rectangular area */
res_struct.aw = res_struct.ah = 0;
if (focus_xw) {
res_struct.xw = focus_xw;
}
if (focus_yh) {
res_struct.yh = focus_yh;
}
if (focus_aw) {
res_struct.aw = DEG2RAD*focus_aw;
}
if (focus_ah) {
res_struct.ah = DEG2RAD*focus_ah;
}
/* Initialize uservar strings */
sprintf(res_pi_var,"res_pi_%i",_comp->_index);
sprintf(res_ki_x_var,"res_ki_x_%i",_comp->_index);
sprintf(res_ki_y_var,"res_ki_y_%i",_comp->_index);
sprintf(res_ki_z_var,"res_ki_z_%i",_comp->_index);
sprintf(res_kf_x_var,"res_kf_x_%i",_comp->_index);
sprintf(res_kf_y_var,"res_kf_y_%i",_comp->_index);
sprintf(res_kf_z_var,"res_kf_z_%i",_comp->_index);
sprintf(res_rx_var,"res_rx_%i",_comp->_index);
sprintf(res_ry_var,"res_ry_%i",_comp->_index);
sprintf(res_rz_var,"res_rz_%i",_comp->_index);
compindex=_comp->_index;
%}
TRACE
%{
double t0, t3; /* Entry/exit time for outer cylinder */
double t1, t2; /* Entry/exit time for inner cylinder */
double v; /* Neutron velocity */
double E;
double l_full; /* Flight path length for non-scattered neutron */
double flight_time; /* Calculated time-of-flight from source to target (detector) */
double dt0, dt1, dt2, dt; /* Flight times through sample */
double solid_angle=0; /* Solid angle of target as seen from scattering point */
double aim_x, aim_y, aim_z, aim_length;
/* Position of target relative to scattering point */
double norm_factor; /* Normalization factor */
int intersect=0;
double kix,kiy,kiz;
double kfx,kfy,kfz;
if(res_struct.isrect)
intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
else
intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
if(intersect)
{
if(t0 < 0) ABSORB;
if(res_struct.isrect) { t1 = t2 = t3; norm_factor = 2*zdepth; } /* box sample */
else {
/* Cylindrical sample */
/* Neutron enters at t=t0. */
/* If cylinder hollow does not exist or is NOT intersected */
if(thickness==0 || !cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius-thickness, yheight)) {
t1 = t2 = t3;
} else {
ABSORB;
}
norm_factor = 2*thickness; /* Maximum path length in the sample for zero vertical divergence */
}
dt0 = t1-t0; /* Time in sample, ingoing */
dt1 = t2-t1; /* Time in hole */
dt2 = t3-t2; /* Time in sample, outgoing */
v = sqrt(vx*vx + vy*vy + vz*vz);
l_full = v * (dt0 + dt2); /* Length of full path through sample */
p *= l_full/norm_factor; /* Normalized scattering probability, proportional to path length in the sample */
dt = rand01()*(dt0+dt2); /* Time of scattering (relative to t0) */
if (dt > dt0)
dt += dt1;
PROP_DT(dt+t0); /* Point of scattering */
/* Store initial neutron state. */
if(p == 0) ABSORB;
kix=V2K*vx; kiy=V2K*vy; kiz=V2K*vz;
particle_setvar_void(_particle, res_pi_var, &p);
particle_setvar_void(_particle, res_ki_x_var, &(kix));
particle_setvar_void(_particle, res_ki_y_var, &(kiy));
particle_setvar_void(_particle, res_ki_z_var, &(kiz));
particle_setvar_void(_particle, res_rx_var, &x);
particle_setvar_void(_particle, res_ry_var, &y);
particle_setvar_void(_particle, res_rz_var, &z);
aim_x = res_struct.tx-x; /* Vector pointing at target (anal./det.) */
aim_y = res_struct.ty-y;
aim_z = res_struct.tz-z;
aim_length = sqrt(aim_x*aim_x+aim_y*aim_y+aim_z*aim_z);
if(res_struct.aw && res_struct.ah) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, res_struct.aw, res_struct.ah, ROT_A_CURRENT_COMP);
} else if(res_struct.xw && res_struct.yh) {
randvec_target_rect(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, res_struct.xw, res_struct.yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, focus_r);
}
NORM(vx, vy, vz);
flight_time = -t + 1e-6*(time_bin + time_width * randpm1());
/* Correct for too large or negative flight_times, based on user-defined f */
for (; flight_time<0; flight_time += 1/f);
for (; flight_time>1/f; flight_time -= 1/f);
v = aim_length / flight_time;
/* !! Remember later to correct for Jacobian in MC choice, t to V !! */
vx *= v;
vy *= v;
vz *= v;
SCATTER;
/* Store final neutron state. */
kfx=V2K*vx; kfy=V2K*vy; kfz=V2K*vz;
particle_setvar_void(_particle, res_kf_x_var, &(kfx));
particle_setvar_void(_particle, res_kf_y_var, &(kfy));
particle_setvar_void(_particle, res_kf_z_var, &(kfz));
}
%}
MCDISPLAY
%{
if(res_struct.isrect)
{ /* Flat sample. */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double len = zdepth/2;
multiline(5, xmin, ymin, -len,
xmax, ymin, -len,
xmax, ymax, -len,
xmin, ymax, -len,
xmin, ymin, -len);
multiline(5, xmin, ymin, len,
xmax, ymin, len,
xmax, ymax, len,
xmin, ymax, len,
xmin, ymin, len);
line(xmin, ymin, -len, xmin, ymin, len);
line(xmax, ymin, -len, xmax, ymin, len);
line(xmin, ymax, -len, xmin, ymax, len);
line(xmax, ymax, -len, xmax, ymax, len);
}
else
{
double radius_i = thickness ? radius-thickness : 0;
circle("xz", 0, yheight/2.0, 0, radius_i);
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius_i);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius_i, -yheight/2.0, 0, -radius_i, +yheight/2.0, 0);
line(+radius_i, -yheight/2.0, 0, +radius_i, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius_i, 0, +yheight/2.0, -radius_i);
line(0, -yheight/2.0, +radius_i, 0, +yheight/2.0, +radius_i);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
}
%}
END
|