1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
// Set OVERLAPPING to 1 in order to fill in the edges of the box, with
// c endcaps and b overlapping a. With the proper choice of parameters,
// (setting rim slds to sld, core sld to solvent, rim thickness to thickness
// and subtracting 2*thickness from length, this should match the hollow
// rectangular prism.) Set it to 0 for the documented behaviour.
#define OVERLAPPING 0
static double
form_volume(double length_a, double length_b, double length_c,
double thick_rim_a, double thick_rim_b, double thick_rim_c)
{
return
#if OVERLAPPING
// Hollow rectangular prism only includes the volume of the shell
// so uncomment the next line when comparing. Solid rectangular
// prism, or parallelepiped want filled cores, so comment when
// comparing.
//-length_a * length_b * length_c +
(length_a + 2.0*thick_rim_a) *
(length_b + 2.0*thick_rim_b) *
(length_c + 2.0*thick_rim_c);
#else
length_a * length_b * length_c +
2.0 * thick_rim_a * length_b * length_c +
2.0 * length_a * thick_rim_b * length_c +
2.0 * length_a * length_b * thick_rim_c;
#endif
}
static double
radius_from_excluded_volume(double length_a, double length_b, double length_c,
double thick_rim_a, double thick_rim_b, double thick_rim_c)
{
double r_equiv, length;
double lengths[3] = {length_a+thick_rim_a, length_b+thick_rim_b, length_c+thick_rim_c};
double lengthmax = fmax(lengths[0],fmax(lengths[1],lengths[2]));
double length_1 = lengthmax;
double length_2 = lengthmax;
double length_3 = lengthmax;
for(int ilen=0; ilen<3; ilen++) {
if (lengths[ilen] < length_1) {
length_2 = length_1;
length_1 = lengths[ilen];
} else {
if (lengths[ilen] < length_2) {
length_2 = lengths[ilen];
}
}
}
if(length_2-length_1 > length_3-length_2) {
r_equiv = sqrt(length_2*length_3/M_PI);
length = length_1;
} else {
r_equiv = sqrt(length_1*length_2/M_PI);
length = length_3;
}
return 0.5*cbrt(0.75*r_equiv*(2.0*r_equiv*length + (r_equiv + length)*(M_PI*r_equiv + length)));
}
static double
radius_from_volume(double length_a, double length_b, double length_c,
double thick_rim_a, double thick_rim_b, double thick_rim_c)
{
const double volume = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c);
return cbrt(volume/M_4PI_3);
}
static double
radius_from_crosssection(double length_a, double length_b, double thick_rim_a, double thick_rim_b)
{
const double area_xsec_paral = length_a*length_b + 2.0*thick_rim_a*length_b + 2.0*thick_rim_b*length_a;
return sqrt(area_xsec_paral/M_PI);
}
static double
radius_effective(int mode, double length_a, double length_b, double length_c,
double thick_rim_a, double thick_rim_b, double thick_rim_c)
{
switch (mode) {
default:
case 1: // equivalent cylinder excluded volume
return radius_from_excluded_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c);
case 2: // equivalent volume sphere
return radius_from_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c);
case 3: // half outer length a
return 0.5 * length_a + thick_rim_a;
case 4: // half outer length b
return 0.5 * length_b + thick_rim_b;
case 5: // half outer length c
return 0.5 * length_c + thick_rim_c;
case 6: // equivalent circular cross-section
return radius_from_crosssection(length_a, length_b, thick_rim_a, thick_rim_b);
case 7: // half outer ab diagonal
return 0.5*sqrt(square(length_a+ 2.0*thick_rim_a) + square(length_b+ 2.0*thick_rim_b));
case 8: // half outer diagonal
return 0.5*sqrt(square(length_a+ 2.0*thick_rim_a) + square(length_b+ 2.0*thick_rim_b) + square(length_c+ 2.0*thick_rim_c));
}
}
static void
Fq(double q,
double *F1,
double *F2,
double core_sld,
double arim_sld,
double brim_sld,
double crim_sld,
double solvent_sld,
double length_a,
double length_b,
double length_c,
double thick_rim_a,
double thick_rim_b,
double thick_rim_c)
{
// Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c
// Did not understand the code completely, it should be rechecked (Miguel Gonzalez)
// Code is rewritten, the code is compliant with Diva Singh's thesis now (Dirk Honecker)
// Code rewritten; cross checked against hollow rectangular prism and realspace (PAK)
const double half_q = 0.5*q;
const double tA = length_a + 2.0*thick_rim_a;
const double tB = length_b + 2.0*thick_rim_b;
const double tC = length_c + 2.0*thick_rim_c;
// Scale factors
const double dr0 = (core_sld-solvent_sld);
const double drA = (arim_sld-solvent_sld);
const double drB = (brim_sld-solvent_sld);
const double drC = (crim_sld-solvent_sld);
// outer integral (with gauss points), integration limits = 0, 1
// substitute d_cos_alpha for sin_alpha d_alpha
double outer_sum_F1 = 0; //initialize integral
double outer_sum_F2 = 0; //initialize integral
for( int i=0; i<GAUSS_N; i++) {
const double cos_alpha = 0.5 * ( GAUSS_Z[i] + 1.0 );
const double mu = half_q * sqrt(1.0-cos_alpha*cos_alpha);
const double siC = length_c * sas_sinx_x(length_c * cos_alpha * half_q);
const double siCt = tC * sas_sinx_x(tC * cos_alpha * half_q);
// inner integral (with gauss points), integration limits = 0, 1
// substitute beta = PI/2 u (so 2/PI * d_(PI/2 * beta) = d_beta)
double inner_sum_F1 = 0.0;
double inner_sum_F2 = 0.0;
for(int j=0; j<GAUSS_N; j++) {
const double u = 0.5 * ( GAUSS_Z[j] + 1.0 );
double sin_beta, cos_beta;
SINCOS(M_PI_2*u, sin_beta, cos_beta);
const double siA = length_a * sas_sinx_x(length_a * mu * sin_beta);
const double siB = length_b * sas_sinx_x(length_b * mu * cos_beta);
const double siAt = tA * sas_sinx_x(tA * mu * sin_beta);
const double siBt = tB * sas_sinx_x(tB * mu * cos_beta);
#if OVERLAPPING
const double f = dr0*siA*siB*siC
+ drA*(siAt-siA)*siB*siC
+ drB*siAt*(siBt-siB)*siC
+ drC*siAt*siBt*(siCt-siC);
#else
const double f = dr0*siA*siB*siC
+ drA*(siAt-siA)*siB*siC
+ drB*siA*(siBt-siB)*siC
+ drC*siA*siB*(siCt-siC);
#endif
inner_sum_F1 += GAUSS_W[j] * f;
inner_sum_F2 += GAUSS_W[j] * f * f;
}
// now complete change of inner integration variable (1-0)/(1-(-1))= 0.5
// and sum up the outer integral
outer_sum_F1 += GAUSS_W[i] * inner_sum_F1 * 0.5;
outer_sum_F2 += GAUSS_W[i] * inner_sum_F2 * 0.5;
}
// now complete change of outer integration variable (1-0)/(1-(-1))= 0.5
outer_sum_F1 *= 0.5;
outer_sum_F2 *= 0.5;
//convert from [1e-12 A-1] to [cm-1]
*F1 = 1.0e-2 * outer_sum_F1;
*F2 = 1.0e-4 * outer_sum_F2;
}
static double
Iqabc(double qa, double qb, double qc,
double core_sld,
double arim_sld,
double brim_sld,
double crim_sld,
double solvent_sld,
double length_a,
double length_b,
double length_c,
double thick_rim_a,
double thick_rim_b,
double thick_rim_c)
{
// cspkernel in csparallelepiped recoded here
const double dr0 = core_sld-solvent_sld;
const double drA = arim_sld-solvent_sld;
const double drB = brim_sld-solvent_sld;
const double drC = crim_sld-solvent_sld;
const double tA = length_a + 2.0*thick_rim_a;
const double tB = length_b + 2.0*thick_rim_b;
const double tC = length_c + 2.0*thick_rim_c;
const double siA = length_a*sas_sinx_x(0.5*length_a*qa);
const double siB = length_b*sas_sinx_x(0.5*length_b*qb);
const double siC = length_c*sas_sinx_x(0.5*length_c*qc);
const double siAt = tA*sas_sinx_x(0.5*tA*qa);
const double siBt = tB*sas_sinx_x(0.5*tB*qb);
const double siCt = tC*sas_sinx_x(0.5*tC*qc);
#if OVERLAPPING
const double f = dr0*siA*siB*siC
+ drA*(siAt-siA)*siB*siC
+ drB*siAt*(siBt-siB)*siC
+ drC*siAt*siBt*(siCt-siC);
#else
const double f = dr0*siA*siB*siC
+ drA*(siAt-siA)*siB*siC
+ drB*siA*(siBt-siB)*siC
+ drC*siA*siB*(siCt-siC);
#endif
return 1.0e-4 * f * f;
}
|