File: rpa.c

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (615 lines) | stat: -rw-r--r-- 18,574 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
double Iq(double q, double fp_case_num,
    double N[], double Phi[], double v[], double L[], double b[],
    double Kab, double Kac, double Kad,
    double Kbc, double Kbd, double Kcd
    );

double Iq(double q, double fp_case_num,
    double N[],    // DEGREE OF POLYMERIZATION
    double Phi[],  // VOL FRACTION
    double v[],    // SPECIFIC VOLUME
    double L[],    // SCATT. LENGTH
    double b[],    // SEGMENT LENGTH
    double Kab, double Kac, double Kad,  // CHI PARAM
    double Kbc, double Kbd, double Kcd
    )
{
  int icase = (int)(fp_case_num+0.5);

  double Nab,Nac,Nad,Nbc,Nbd,Ncd;
  double Phiab,Phiac,Phiad,Phibc,Phibd,Phicd;
  double vab,vac,vad,vbc,vbd,vcd;
  double m;
  double Xa,Xb,Xc,Xd;
  double Paa,S0aa,Pab,S0ab,Pac,S0ac,Pad,S0ad;
  double S0ba,Pbb,S0bb,Pbc,S0bc,Pbd,S0bd;
  double S0ca,S0cb,Pcc,S0cc,Pcd,S0cd;
  //double S0da,S0db,S0dc;
  double Pdd,S0dd;
  double Kaa,Kbb,Kcc;
  double Kba,Kca,Kcb;
  //double Kda,Kdb,Kdc,Kdd;
  double Zaa,Zab,Zac,Zba,Zbb,Zbc,Zca,Zcb,Zcc;
  double DenT,T11,T12,T13,T21,T22,T23,T31,T32,T33;
  double Y1,Y2,Y3,X11,X12,X13,X21,X22,X23,X31,X32,X33;
  double ZZ,DenQ1,DenQ2,DenQ3,DenQ,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33;
  double N11,N12,N13,N21,N22,N23,N31,N32,N33;
  double M11,M12,M13,M21,M22,M23,M31,M32,M33;
  double S11,S12,S22,S23,S13,S33;
  //double S21,S31,S32,S44; 
  //double S14,S24,S34,S41,S42,S43;
  double Lad,Lbd,Lcd,Nav,Intg;

  // Set values for non existent parameters (eg. no A or B in case 0 and 1 etc)
  //icase was shifted to N-1 from the original code
  if (icase <= 1){
    Phi[0] = Phi[1] = 0.0000001;
    N[0] = N[1] = 1000.0;
    L[0] = L[1] = 1.e-12;
    v[0] = v[1] = 100.0;
    b[0] = b[1] = 5.0;
    Kab = Kac = Kad = Kbc = Kbd = -0.0004;
  }
  else if ((icase > 1) && (icase <= 4)){
    Phi[0] = 0.0000001;
    N[0] = 1000.0;
    L[0] = 1.e-12;
    v[0] = 100.0;
    b[0] = 5.0;
    Kab = Kac = Kad = -0.0004;
  }

  // Set volume fraction of component D based on constraint that sum of vol frac =1
  Phi[3]=1.0-Phi[0]-Phi[1]-Phi[2];

  //set up values for cross terms in case of block copolymers (1,3,4,6,7,8,9)
  Nab=sqrt(N[0]*N[1]);
  Nac=sqrt(N[0]*N[2]);
  Nad=sqrt(N[0]*N[3]);
  Nbc=sqrt(N[1]*N[2]);
  Nbd=sqrt(N[1]*N[3]);
  Ncd=sqrt(N[2]*N[3]);

  vab=sqrt(v[0]*v[1]);
  vac=sqrt(v[0]*v[2]);
  vad=sqrt(v[0]*v[3]);
  vbc=sqrt(v[1]*v[2]);
  vbd=sqrt(v[1]*v[3]);
  vcd=sqrt(v[2]*v[3]);

  Phiab=sqrt(Phi[0]*Phi[1]);
  Phiac=sqrt(Phi[0]*Phi[2]);
  Phiad=sqrt(Phi[0]*Phi[3]);
  Phibc=sqrt(Phi[1]*Phi[2]);
  Phibd=sqrt(Phi[1]*Phi[3]);
  Phicd=sqrt(Phi[2]*Phi[3]);

  // Calculate Q^2 * Rg^2 for each homopolymer assuming random walk
  Xa=q*q*b[0]*b[0]*N[0]/6.0;
  Xb=q*q*b[1]*b[1]*N[1]/6.0;
  Xc=q*q*b[2]*b[2]*N[2]/6.0;
  Xd=q*q*b[3]*b[3]*N[3]/6.0;

  //calculate all partial structure factors Pij and normalize n^2
  Paa=2.0*(exp(-Xa)-1.0+Xa)/(Xa*Xa); // free A chain form factor
  S0aa=N[0]*Phi[0]*v[0]*Paa; // Phi * Vp * P(Q)= I(Q0)/delRho^2
  Pab=((1.0-exp(-Xa))/Xa)*((1.0-exp(-Xb))/Xb); //AB diblock (anchored Paa * anchored Pbb) partial form factor
  S0ab=(Phiab*vab*Nab)*Pab;
  Pac=((1.0-exp(-Xa))/Xa)*exp(-Xb)*((1.0-exp(-Xc))/Xc); //ABC triblock AC partial form factor
  S0ac=(Phiac*vac*Nac)*Pac;
  Pad=((1.0-exp(-Xa))/Xa)*exp(-Xb-Xc)*((1.0-exp(-Xd))/Xd); //ABCD four block
  S0ad=(Phiad*vad*Nad)*Pad;

  S0ba=S0ab;
  Pbb=2.0*(exp(-Xb)-1.0+Xb)/(Xb*Xb); // free B chain
  S0bb=N[1]*Phi[1]*v[1]*Pbb;
  Pbc=((1.0-exp(-Xb))/Xb)*((1.0-exp(-Xc))/Xc); // BC diblock
  S0bc=(Phibc*vbc*Nbc)*Pbc;
  Pbd=((1.0-exp(-Xb))/Xb)*exp(-Xc)*((1.0-exp(-Xd))/Xd); // BCD triblock
  S0bd=(Phibd*vbd*Nbd)*Pbd;

  S0ca=S0ac;
  S0cb=S0bc;
  Pcc=2.0*(exp(-Xc)-1.0+Xc)/(Xc*Xc); // Free C chain
  S0cc=N[2]*Phi[2]*v[2]*Pcc;
  Pcd=((1.0-exp(-Xc))/Xc)*((1.0-exp(-Xd))/Xd); // CD diblock
  S0cd=(Phicd*vcd*Ncd)*Pcd;

  //S0da=S0ad;
  //S0db=S0bd;
  //S0dc=S0cd;
  Pdd=2.0*(exp(-Xd)-1.0+Xd)/(Xd*Xd); // free D chain
  S0dd=N[3]*Phi[3]*v[3]*Pdd;

  // Reset all unused partial structure factors to 0 (depends on case)
  //icase was shifted to N-1 from the original code
  switch(icase){
  case 0:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bb=0.000005;
    S0bc=0.000006;
    S0bd=0.000007;
    S0cd=0.000008;
    break;
  case 1:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bb=0.000005;
    S0bc=0.000006;
    S0bd=0.000007;
    break;
  case 2:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bc=0.000005;
    S0bd=0.000006;
    S0cd=0.000007;
    break;
  case 3:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bc=0.000005;
    S0bd=0.000006;
    break;
  case 4:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    break;
  case 5:
    S0ab=0.000001;
    S0ac=0.000002;
    S0ad=0.000003;
    S0bc=0.000004;
    S0bd=0.000005;
    S0cd=0.000006;
    break;
  case 6:
    S0ab=0.000001;
    S0ac=0.000002;
    S0ad=0.000003;
    S0bc=0.000004;
    S0bd=0.000005;
    break;
  case 7:
    S0ab=0.000001;
    S0ac=0.000002;
    S0ad=0.000003;
    break;
  case 8:
    S0ac=0.000001;
    S0ad=0.000002;
    S0bc=0.000003;
    S0bd=0.000004;
    break;
  default : //case 9:
    break;
  }
  S0ba=S0ab;
  S0ca=S0ac;
  S0cb=S0bc;
  //S0da=S0ad;
  //S0db=S0bd;
  //S0dc=S0cd;

  // self chi parameter is 0 ... of course
  Kaa=0.0;
  Kbb=0.0;
  Kcc=0.0;
  //Kdd=0.0;

  Kba=Kab;
  Kca=Kac;
  Kcb=Kbc;
  //Kda=Kad;
  //Kdb=Kbd;
  //Kdc=Kcd;

  Zaa=Kaa-Kad-Kad;
  Zab=Kab-Kad-Kbd;
  Zac=Kac-Kad-Kcd;
  Zba=Kba-Kbd-Kad;
  Zbb=Kbb-Kbd-Kbd;
  Zbc=Kbc-Kbd-Kcd;
  Zca=Kca-Kcd-Kad;
  Zcb=Kcb-Kcd-Kbd;
  Zcc=Kcc-Kcd-Kcd;

  DenT=(-(S0ac*S0bb*S0ca) + S0ab*S0bc*S0ca + S0ac*S0ba*S0cb - S0aa*S0bc*S0cb - S0ab*S0ba*S0cc + S0aa*S0bb*S0cc);

  T11= (-(S0bc*S0cb) + S0bb*S0cc)/DenT;
  T12= (S0ac*S0cb - S0ab*S0cc)/DenT;
  T13= (-(S0ac*S0bb) + S0ab*S0bc)/DenT;
  T21= (S0bc*S0ca - S0ba*S0cc)/DenT;
  T22= (-(S0ac*S0ca) + S0aa*S0cc)/DenT;
  T23= (S0ac*S0ba - S0aa*S0bc)/DenT;
  T31= (-(S0bb*S0ca) + S0ba*S0cb)/DenT;
  T32= (S0ab*S0ca - S0aa*S0cb)/DenT;
  T33= (-(S0ab*S0ba) + S0aa*S0bb)/DenT;

  Y1=T11*S0ad+T12*S0bd+T13*S0cd+1.0;
  Y2=T21*S0ad+T22*S0bd+T23*S0cd+1.0;
  Y3=T31*S0ad+T32*S0bd+T33*S0cd+1.0;

  X11=Y1*Y1;
  X12=Y1*Y2;
  X13=Y1*Y3;
  X21=Y2*Y1;
  X22=Y2*Y2;
  X23=Y2*Y3;
  X31=Y3*Y1;
  X32=Y3*Y2;
  X33=Y3*Y3;

  ZZ=S0ad*(T11*S0ad+T12*S0bd+T13*S0cd)+S0bd*(T21*S0ad+T22*S0bd+T23*S0cd)+S0cd*(T31*S0ad+T32*S0bd+T33*S0cd);

  // D is considered the matrix or background component so enters here
  m=1.0/(S0dd-ZZ);

  N11=m*X11+Zaa;
  N12=m*X12+Zab;
  N13=m*X13+Zac;
  N21=m*X21+Zba;
  N22=m*X22+Zbb;
  N23=m*X23+Zbc;
  N31=m*X31+Zca;
  N32=m*X32+Zcb;
  N33=m*X33+Zcc;

  M11= N11*S0aa + N12*S0ab + N13*S0ac;
  M12= N11*S0ab + N12*S0bb + N13*S0bc;
  M13= N11*S0ac + N12*S0bc + N13*S0cc;
  M21= N21*S0aa + N22*S0ab + N23*S0ac;
  M22= N21*S0ab + N22*S0bb + N23*S0bc;
  M23= N21*S0ac + N22*S0bc + N23*S0cc;
  M31= N31*S0aa + N32*S0ab + N33*S0ac;
  M32= N31*S0ab + N32*S0bb + N33*S0bc;
  M33= N31*S0ac + N32*S0bc + N33*S0cc;

  DenQ1=1.0+M11-M12*M21+M22+M11*M22-M13*M31-M13*M22*M31;
  DenQ2=  M12*M23*M31+M13*M21*M32-M23*M32-M11*M23*M32+M33+M11*M33;
  DenQ3=  -M12*M21*M33+M22*M33+M11*M22*M33;
  DenQ=DenQ1+DenQ2+DenQ3;

  Q11= (1.0 + M22-M23*M32 + M33 + M22*M33)/DenQ;
  Q12= (-M12 + M13*M32 - M12*M33)/DenQ;
  Q13= (-M13 - M13*M22 + M12*M23)/DenQ;
  Q21= (-M21 + M23*M31 - M21*M33)/DenQ;
  Q22= (1.0 + M11 - M13*M31 + M33 + M11*M33)/DenQ;
  Q23= (M13*M21 - M23 - M11*M23)/DenQ;
  Q31= (-M31 - M22*M31 + M21*M32)/DenQ;
  Q32= (M12*M31 - M32 - M11*M32)/DenQ;
  Q33= (1.0 + M11 - M12*M21 + M22 + M11*M22)/DenQ;

  S11= Q11*S0aa + Q21*S0ab + Q31*S0ac;
  S12= Q12*S0aa + Q22*S0ab + Q32*S0ac;
  S13= Q13*S0aa + Q23*S0ab + Q33*S0ac;
  S22= Q12*S0ba + Q22*S0bb + Q32*S0bc;
  S23= Q13*S0ba + Q23*S0bb + Q33*S0bc;
  S33= Q13*S0ca + Q23*S0cb + Q33*S0cc;
  //S21= Q11*S0ba + Q21*S0bb + Q31*S0bc;
  //S31= Q11*S0ca + Q21*S0cb + Q31*S0cc;
  //S32= Q12*S0ca + Q22*S0cb + Q32*S0cc;
  //S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23;
  //S14=-S11-S12-S13;
  //S24=-S21-S22-S23;
  //S34=-S31-S32-S33;
  //S41=S14;
  //S42=S24;
  //S43=S34;

  //calculate contrast where L[i] is the scattering length of i and D is the matrix
  //Note that should multiply by Nav to get units of SLD which will become
  // Nav*2 in the next line (SLD^2) but then normalization in that line would
  //need to divide by Nav leaving only Nav or sqrt(Nav) before squaring.
  Nav=6.022045e+23;
  Lad=(L[0]/v[0]-L[3]/v[3])*sqrt(Nav);
  Lbd=(L[1]/v[1]-L[3]/v[3])*sqrt(Nav);
  Lcd=(L[2]/v[2]-L[3]/v[3])*sqrt(Nav);

  Intg=Lad*Lad*S11+Lbd*Lbd*S22+Lcd*Lcd*S33+2.0*Lad*Lbd*S12+2.0*Lbd*Lcd*S23+2.0*Lad*Lcd*S13;

  //rescale for units of Lij^2 (fm^2 to cm^2)
  Intg *= 1.0e-26;

  return Intg;


/*  Attempts at a new implementation --- supressed for now
#if 1  // Sasview defaults
  if (icase <= 1) {
    N[0]=N[1]=1000.0;
    Phi[0]=Phi[1]=0.0000001;
    Kab=Kac=Kad=Kbc=Kbd=-0.0004;
    L[0]=L[1]=1.0e-12;
    v[0]=v[1]=100.0;
    b[0]=b[1]=5.0;
  } else if (icase <= 4) {
    Phi[0]=0.0000001;
    Kab=Kac=Kad=-0.0004;
    L[0]=1.0e-12;
    v[0]=100.0;
    b[0]=5.0;
  }
#else
  if (icase <= 1) {
    N[0]=N[1]=0.0;
    Phi[0]=Phi[1]=0.0;
    Kab=Kac=Kad=Kbc=Kbd=0.0;
    L[0]=L[1]=L[3];
    v[0]=v[1]=v[3];
    b[0]=b[1]=0.0;
  } else if (icase <= 4) {
    N[0] = 0.0;
    Phi[0]=0.0;
    Kab=Kac=Kad=0.0;
    L[0]=L[3];
    v[0]=v[3];
    b[0]=0.0;
  }
#endif

  const double Xa = q*q*b[0]*b[0]*N[0]/6.0;
  const double Xb = q*q*b[1]*b[1]*N[1]/6.0;
  const double Xc = q*q*b[2]*b[2]*N[2]/6.0;
  const double Xd = q*q*b[3]*b[3]*N[3]/6.0;

  // limit as Xa goes to 0 is 1
  const double Pa = Xa==0 ? 1.0 : -expm1(-Xa)/Xa;
  const double Pb = Xb==0 ? 1.0 : -expm1(-Xb)/Xb;
  const double Pc = Xc==0 ? 1.0 : -expm1(-Xc)/Xc;
  const double Pd = Xd==0 ? 1.0 : -expm1(-Xd)/Xd;

  // limit as Xa goes to 0 is 1
  const double Paa = Xa==0 ? 1.0 : 2.0*(1.0-Pa)/Xa;
  const double Pbb = Xb==0 ? 1.0 : 2.0*(1.0-Pb)/Xb;
  const double Pcc = Xc==0 ? 1.0 : 2.0*(1.0-Pc)/Xc;
  const double Pdd = Xd==0 ? 1.0 : 2.0*(1.0-Pd)/Xd;


  // Note: S0ij only defined for copolymers; otherwise set to zero
  // 0: C/D     binary mixture
  // 1: C-D     diblock copolymer
  // 2: B/C/D   ternery mixture
  // 3: B/C-D   binary mixture,1 homopolymer, 1 diblock copolymer
  // 4: B-C-D   triblock copolymer
  // 5: A/B/C/D quaternary mixture
  // 6: A/B/C-D ternery mixture, 2 homopolymer, 1 diblock copolymer
  // 7: A/B-C-D binary mixture, 1 homopolymer, 1 triblock copolymer
  // 8: A-B/C-D binary mixture, 2 diblock copolymer
  // 9: A-B-C-D tetra-block copolymer
#if 0
  const double S0aa = icase<5
                      ? 1.0 : N[0]*Phi[0]*v[0]*Paa;
  const double S0bb = icase<2
                      ? 1.0 : N[1]*Phi[1]*v[1]*Pbb;
  const double S0cc = N[2]*Phi[2]*v[2]*Pcc;
  const double S0dd = N[3]*Phi[3]*v[3]*Pdd;
  const double S0ab = icase<8
                      ? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[1]*v[1]*Phi[1])*Pa*Pb;
  const double S0ac = icase<9
                      ? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[2]*v[2]*Phi[2])*Pa*Pc*exp(-Xb);
  const double S0ad = icase<9
                      ? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[3]*v[3]*Phi[3])*Pa*Pd*exp(-Xb-Xc);
  const double S0bc = (icase!=4 && icase!=7 && icase!= 9)
                      ? 0.0 : sqrt(N[1]*v[1]*Phi[1]*N[2]*v[2]*Phi[2])*Pb*Pc;
  const double S0bd = (icase!=4 && icase!=7 && icase!= 9)
                      ? 0.0 : sqrt(N[1]*v[1]*Phi[1]*N[3]*v[3]*Phi[3])*Pb*Pd*exp(-Xc);
  const double S0cd = (icase==0 || icase==2 || icase==5)
                      ? 0.0 : sqrt(N[2]*v[2]*Phi[2]*N[3]*v[3]*Phi[3])*Pc*Pd;
#else  // sasview equivalent
//printf("Xc=%g, S0cc=%g*%g*%g*%g\n",Xc,N[2],Phi[2],v[2],Pcc);
  double S0aa = N[0]*Phi[0]*v[0]*Paa;
  double S0bb = N[1]*Phi[1]*v[1]*Pbb;
  double S0cc = N[2]*Phi[2]*v[2]*Pcc;
  double S0dd = N[3]*Phi[3]*v[3]*Pdd;
  double S0ab = sqrt(N[0]*v[0]*Phi[0]*N[1]*v[1]*Phi[1])*Pa*Pb;
  double S0ac = sqrt(N[0]*v[0]*Phi[0]*N[2]*v[2]*Phi[2])*Pa*Pc*exp(-Xb);
  double S0ad = sqrt(N[0]*v[0]*Phi[0]*N[3]*v[3]*Phi[3])*Pa*Pd*exp(-Xb-Xc);
  double S0bc = sqrt(N[1]*v[1]*Phi[1]*N[2]*v[2]*Phi[2])*Pb*Pc;
  double S0bd = sqrt(N[1]*v[1]*Phi[1]*N[3]*v[3]*Phi[3])*Pb*Pd*exp(-Xc);
  double S0cd = sqrt(N[2]*v[2]*Phi[2]*N[3]*v[3]*Phi[3])*Pc*Pd;
switch(icase){
  case 0:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bb=0.000005;
    S0bc=0.000006;
    S0bd=0.000007;
    S0cd=0.000008;
    break;
  case 1:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bb=0.000005;
    S0bc=0.000006;
    S0bd=0.000007;
    break;
  case 2:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bc=0.000005;
    S0bd=0.000006;
    S0cd=0.000007;
    break;
  case 3:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    S0bc=0.000005;
    S0bd=0.000006;
    break;
  case 4:
    S0aa=0.000001;
    S0ab=0.000002;
    S0ac=0.000003;
    S0ad=0.000004;
    break;
  case 5:
    S0ab=0.000001;
    S0ac=0.000002;
    S0ad=0.000003;
    S0bc=0.000004;
    S0bd=0.000005;
    S0cd=0.000006;
    break;
  case 6:
    S0ab=0.000001;
    S0ac=0.000002;
    S0ad=0.000003;
    S0bc=0.000004;
    S0bd=0.000005;
    break;
  case 7:
    S0ab=0.000001;
    S0ac=0.000002;
    S0ad=0.000003;
    break;
  case 8:
    S0ac=0.000001;
    S0ad=0.000002;
    S0bc=0.000003;
    S0bd=0.000004;
    break;
  default : //case 9:
    break;
  }
#endif

  // eq 12a: \kappa_{ij}^F = \chi_{ij}^F - \chi_{i0}^F - \chi_{j0}^F
  const double Kaa = 0.0;
  const double Kbb = 0.0;
  const double Kcc = 0.0;
  //const double Kdd = 0.0;
  const double Zaa = Kaa - Kad - Kad;
  const double Zab = Kab - Kad - Kbd;
  const double Zac = Kac - Kad - Kcd;
  const double Zbb = Kbb - Kbd - Kbd;
  const double Zbc = Kbc - Kbd - Kcd;
  const double Zcc = Kcc - Kcd - Kcd;
//printf("Za: %10.5g %10.5g %10.5g\n", Zaa, Zab, Zac);
//printf("Zb: %10.5g %10.5g %10.5g\n", Zab, Zbb, Zbc);
//printf("Zc: %10.5g %10.5g %10.5g\n", Zac, Zbc, Zcc);

  // T = inv(S0)
  const double DenT = (- S0ac*S0bb*S0ac + S0ab*S0bc*S0ac + S0ac*S0ab*S0bc
                       - S0aa*S0bc*S0bc - S0ab*S0ab*S0cc + S0aa*S0bb*S0cc);
  const double T11 = (-S0bc*S0bc + S0bb*S0cc)/DenT;
  const double T12 = ( S0ac*S0bc - S0ab*S0cc)/DenT;
  const double T13 = (-S0ac*S0bb + S0ab*S0bc)/DenT;
  const double T22 = (-S0ac*S0ac + S0aa*S0cc)/DenT;
  const double T23 = ( S0ac*S0ab - S0aa*S0bc)/DenT;
  const double T33 = (-S0ab*S0ab + S0aa*S0bb)/DenT;

//printf("T1: %10.5g %10.5g %10.5g\n", T11, T12, T13);
//printf("T2: %10.5g %10.5g %10.5g\n", T12, T22, T23);
//printf("T3: %10.5g %10.5g %10.5g\n", T13, T23, T33);

  // eq 18e: m = 1/(S0_{dd} - s0^T inv(S0) s0)
  const double ZZ = S0ad*(T11*S0ad + T12*S0bd + T13*S0cd)
                  + S0bd*(T12*S0ad + T22*S0bd + T23*S0cd)
                  + S0cd*(T13*S0ad + T23*S0bd + T33*S0cd);

  const double m=1.0/(S0dd-ZZ);

  // eq 18d: Y = inv(S0)s0 + e
  const double Y1 = T11*S0ad + T12*S0bd + T13*S0cd + 1.0;
  const double Y2 = T12*S0ad + T22*S0bd + T23*S0cd + 1.0;
  const double Y3 = T13*S0ad + T23*S0bd + T33*S0cd + 1.0;

  // N = mYY^T + \kappa^F
  const double N11 = m*Y1*Y1 + Zaa;
  const double N12 = m*Y1*Y2 + Zab;
  const double N13 = m*Y1*Y3 + Zac;
  const double N22 = m*Y2*Y2 + Zbb;
  const double N23 = m*Y2*Y3 + Zbc;
  const double N33 = m*Y3*Y3 + Zcc;

//printf("N1: %10.5g %10.5g %10.5g\n", N11, N12, N13);
//printf("N2: %10.5g %10.5g %10.5g\n", N12, N22, N23);
//printf("N3: %10.5g %10.5g %10.5g\n", N13, N23, N33);
//printf("S0a: %10.5g %10.5g %10.5g\n", S0aa, S0ab, S0ac);
//printf("S0b: %10.5g %10.5g %10.5g\n", S0ab, S0bb, S0bc);
//printf("S0c: %10.5g %10.5g %10.5g\n", S0ac, S0bc, S0cc);

  // M = I + S0 N
  const double Maa = N11*S0aa + N12*S0ab + N13*S0ac + 1.0;
  const double Mab = N11*S0ab + N12*S0bb + N13*S0bc;
  const double Mac = N11*S0ac + N12*S0bc + N13*S0cc;
  const double Mba = N12*S0aa + N22*S0ab + N23*S0ac;
  const double Mbb = N12*S0ab + N22*S0bb + N23*S0bc + 1.0;
  const double Mbc = N12*S0ac + N22*S0bc + N23*S0cc;
  const double Mca = N13*S0aa + N23*S0ab + N33*S0ac;
  const double Mcb = N13*S0ab + N23*S0bb + N33*S0bc;
  const double Mcc = N13*S0ac + N23*S0bc + N33*S0cc + 1.0;
//printf("M1: %10.5g %10.5g %10.5g\n", Maa, Mab, Mac);
//printf("M2: %10.5g %10.5g %10.5g\n", Mba, Mbb, Mbc);
//printf("M3: %10.5g %10.5g %10.5g\n", Mca, Mcb, Mcc);

  // Q = inv(M) = inv(I + S0 N)
  const double DenQ = (+ Maa*Mbb*Mcc - Maa*Mbc*Mcb - Mab*Mba*Mcc
                       + Mab*Mbc*Mca + Mac*Mba*Mcb - Mac*Mbb*Mca);

  const double Q11 = ( Mbb*Mcc - Mbc*Mcb)/DenQ;
  const double Q12 = (-Mab*Mcc + Mac*Mcb)/DenQ;
  const double Q13 = ( Mab*Mbc - Mac*Mbb)/DenQ;
  //const double Q21 = (-Mba*Mcc + Mbc*Mca)/DenQ;
  const double Q22 = ( Maa*Mcc - Mac*Mca)/DenQ;
  const double Q23 = (-Maa*Mbc + Mac*Mba)/DenQ;
  //const double Q31 = ( Mba*Mcb - Mbb*Mca)/DenQ;
  //const double Q32 = (-Maa*Mcb + Mab*Mca)/DenQ;
  const double Q33 = ( Maa*Mbb - Mab*Mba)/DenQ;

//printf("Q1: %10.5g %10.5g %10.5g\n", Q11, Q12, Q13);
//printf("Q2: %10.5g %10.5g %10.5g\n", Q21, Q22, Q23);
//printf("Q3: %10.5g %10.5g %10.5g\n", Q31, Q32, Q33);
  // eq 18c: inv(S) = inv(S0) + mYY^T + \kappa^F
  // eq A1 in the appendix
  // To solve for S, use:
  //      S = inv(inv(S^0) + N) inv(S^0) S^0
  //        = inv(S^0 inv(S^0) + N) S^0
  //        = inv(I + S^0 N) S^0
  //        = Q S^0
  const double S11 = Q11*S0aa + Q12*S0ab + Q13*S0ac;
  const double S12 = Q12*S0aa + Q22*S0ab + Q23*S0ac;
  const double S13 = Q13*S0aa + Q23*S0ab + Q33*S0ac;
  const double S22 = Q12*S0ab + Q22*S0bb + Q23*S0bc;
  const double S23 = Q13*S0ab + Q23*S0bb + Q33*S0bc;
  const double S33 = Q13*S0ac + Q23*S0bc + Q33*S0cc;
  // If the full S is needed...it isn't since Ldd = (rho_d - rho_d) = 0 below
  //const double S14=-S11-S12-S13;
  //const double S24=-S12-S22-S23;
  //const double S34=-S13-S23-S33;
  //const double S44=S11+S22+S33 + 2.0*(S12+S13+S23);

  // eq 12 of Akcasu, 1990: I(q) = L^T S L
  // Note: eliminate cases without A and B polymers by setting Lij to 0
  // Note: 1e-13 to convert from fm to cm for scattering length
  const double sqrt_Nav=sqrt(6.022045e+23) * 1.0e-13;
  const double Lad = icase<5 ? 0.0 : (L[0]/v[0] - L[3]/v[3])*sqrt_Nav;
  const double Lbd = icase<2 ? 0.0 : (L[1]/v[1] - L[3]/v[3])*sqrt_Nav;
  const double Lcd = (L[2]/v[2] - L[3]/v[3])*sqrt_Nav;

  const double result=Lad*Lad*S11 + Lbd*Lbd*S22 + Lcd*Lcd*S33
                    + 2.0*(Lad*Lbd*S12 + Lbd*Lcd*S23 + Lad*Lcd*S13);

  return result;
*/
}