File: sphere.py

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (184 lines) | stat: -rw-r--r-- 8,138 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
r"""
For information about polarised and magnetic scattering, see
the :ref:`magnetism` documentation.

Definition
----------

The 1D scattering intensity is calculated in the following way (Guinier, 1955)

.. math::

    I(q) = \frac{\text{scale}}{V} \cdot \left[
        3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
        \right]^2 + \text{background}

where *scale* is a volume fraction, $V$ is the volume of the scatterer,
$r$ is the radius of the sphere and *background* is the background level.
*sld* and *sld_solvent* are the scattering length densities (SLDs) of the
scatterer and the solvent respectively, whose difference is $\Delta\rho$.

Note that if your data is in absolute scale, the *scale* should represent
the volume fraction (which is unitless) if you have a good fit. If not,
it should represent the volume fraction times a factor (by which your data
might need to be rescaled).

The 2D scattering intensity is the same as above, regardless of the
orientation of $\vec q$.

Validation
----------

Validation of our code was done by comparing the output of the 1D model
to the output of the software provided by the NIST (Kline, 2006).


References
----------

#. A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
   John Wiley and Sons, New York, (1955)

Authorship and Verification
----------------------------

* **Author:**
* **Last Modified by:**
* **Last Reviewed by:** S King and P Parker **Date:** 2013/09/09 and 2014/01/06
"""

import numpy as np
from numpy import inf

name = "sphere"
title = "Spheres with uniform scattering length density"
description = """\
P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
                /(qr)^3]^2 + background
    r: radius of sphere
    V: The volume of the scatter
    sld: the SLD of the sphere
    sld_solvent: the SLD of the solvent
"""
category = "shape:sphere"

#             ["name", "units", default, [lower, upper], "type","description"],
parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld",
               "Layer scattering length density"],
              ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld",
               "Solvent scattering length density"],
              ["radius", "Ang", 50, [0, inf], "volume",
               "Sphere radius"],
             ]

source = ["lib/sas_3j1x_x.c", "sphere.c"]
have_Fq = True
radius_effective_modes = ["radius"]
#single = False

def random():
    """Return a random parameter set for the model."""
    radius = 10**np.random.uniform(1.3, 4)
    pars = dict(
        radius=radius,
    )
    return pars
#2345678901234567890123456789012345678901234567890123456789012345678901234567890
tests = [
    [{}, 0.2, 0.726362],  # each test starts with default parameter values
    #            inside { }, unless modified. Then Q and expected value of I(Q)
    # putting None for an expected result will pass the test if there are no
    # errors from the routine, but without any check on the value of the result
    [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
      "radius": 120.},
     [0.01, 0.1, 0.2], [1.34836265e+04, 6.20114062e+00, 1.04733914e-01]],
    [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
      #  careful tests here R=120 Pd=.2, then with S(Q) at default Reff=50
      #  (but this gets changed to 120) phi=0,2
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
     [0.01, 0.1, 0.2], [1.74395295e+04, 3.68016987e+00, 2.28843099e-01]],
    # a list of Q values and list of expected results is also possible
    [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
     0.01, 335839.88055473, 1.41045057e+11, 120.0, 8087664.122641933, 1.0],
    # the longer list here checks  F1, F2, R_eff, volume, volume_ratio
    [{"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
     0.1, 482.93824329, 29763977.79867414, 120.0, 8087664.122641933, 1.0],
    [{"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
     0.2, 1.23330406, 1850806.1197361, 120.0, 8087664.122641933, 1.0],
    #  But note P(Q) = F2/volume
    #  F and F^2 are "unscaled", with for  n <F F*>S(q) or for beta approx
    #          I(q) = n [<F F*> + <F><F*> (S(q) - 1)]
    #  for n the number density and <.> the orientation average, and
    #  F = integral rho(r) exp(i q . r) dr.
    #  The number density is volume fraction divided by particle volume.
    #  Effectively, this leaves F = V drho form, where form is the usual
    #  3 j1(qr)/(qr) or whatever depending on the shape.
    # @S RESULTS using F1 and F2 from the longer test string above:
    #
    # I(Q) = (F2 + F1^2*(S(Q) -1))*volfraction*scale/Volume  + background
    #
    # with by default scale=1.0, background=0.001
    # NOTE currently S(Q) volfraction is also included in scaling
    #  structure_factor_mode 0 = normal decoupling approx,
    #                        1 = beta(Q) approx
    # radius_effective_mode  0 is for free choice,
    #                        1 is use radius from F2(Q)
    #    (sphere only has two choices, other models may have more)
    [{"@S": "hardsphere",
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45, "volfraction": 0.2,
      #"radius_effective":50.0,    # hard sphere structure factor
      "structure_factor_mode": 1,  # mode 0 = normal decoupling approx,
      #                                   1 = beta(Q) approx
      "radius_effective_mode": 0   # this used default hardsphere Reff=50
     }, [0.01, 0.1, 0.2], [1.32473756e+03, 7.36633631e-01, 4.67686201e-02]],
    [{"@S": "hardsphere",
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
      "volfraction": 0.2,
      "radius_effective": 45.0,     # explicit Reff over rides either 50 or 120
      "structure_factor_mode": 1,  # beta approx
      "radius_effective_mode": 0   #
      }, 0.01, 1316.2990966463444],
    [{"@S": "hardsphere",
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
      "volfraction": 0.2,
      "radius_effective": 120.0,    # over ride Reff
      "structure_factor_mode": 1,  # beta approx
      "radius_effective_mode": 0   # (mode=1 here also uses 120)
     }, [0.01, 0.1, 0.2], [1.57928589e+03, 7.37067923e-01, 4.67686197e-02]],
    [{"@S": "hardsphere",
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
      "volfraction": 0.2,
      #"radius_effective": 120.0,   # hard sphere structure factor
      "structure_factor_mode": 0,  # normal decoupling approximation
      "radius_effective_mode": 1   # this uses 120 from the form factor
     }, [0.01, 0.1, 0.2], [1.10112335e+03, 7.41366536e-01, 4.66630207e-02]],
    [{"@S": "hardsphere",
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
      "volfraction": 0.2,
      #"radius_effective": 50.0,    # hard sphere structure factor
      "structure_factor_mode": 0,  # normal decoupling approximation
      "radius_effective_mode": 0   # this used 50 the default for hardsphere
     }, [0.01, 0.1, 0.2], [7.82803598e+02, 6.85943611e-01, 4.71586457e-02]],


    # Check returned intermediate results.
    # Note: Target values come from double precision dll calculation.
    # TODO: Cross check results against other software.
    [{"@S": "hardsphere",
      "radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
      "volfraction": 0.2,
      "radius_effective": 120.0,   # hard sphere structure factor
      "structure_factor_mode": 1,  # normal decoupling approximation
      "radius_effective_mode": 0,  # mode 0 says ignore Reff from P
     }, [0.01, 0.1, 0.2], [1.57928589e+03, 7.37067923e-01, 4.67686197e-02],
     {"P(Q)": [3487.905895219423, 0.7360339734027279, 0.04576861975646704],
      "S(Q)": [0.31569726516764035, 1.005886362143737, 0.9976927625183415],
      #"beta(Q)": [0.7996623765645325, 0.007835960247334845, 8.218250904154009e-07],
      "beta(Q)": None,  # Single precision not good enough for 5 digits of beta
      "S_eff(Q)": [0.4527888487743462, 1.0000461252997597, 0.9999999981038543],
      "volume": 8087664.122641933,
      "volume_ratio": 1.0,
      "radius_effective": 0.0,  # zero since mode is 0, and Reff isn't computed
     }],
    ]