1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
r"""
For information about polarised and magnetic scattering, see
the :ref:`magnetism` documentation.
Definition
----------
The 1D scattering intensity is calculated in the following way (Guinier, 1955)
.. math::
I(q) = \frac{\text{scale}}{V} \cdot \left[
3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
\right]^2 + \text{background}
where *scale* is a volume fraction, $V$ is the volume of the scatterer,
$r$ is the radius of the sphere and *background* is the background level.
*sld* and *sld_solvent* are the scattering length densities (SLDs) of the
scatterer and the solvent respectively, whose difference is $\Delta\rho$.
Note that if your data is in absolute scale, the *scale* should represent
the volume fraction (which is unitless) if you have a good fit. If not,
it should represent the volume fraction times a factor (by which your data
might need to be rescaled).
The 2D scattering intensity is the same as above, regardless of the
orientation of $\vec q$.
Validation
----------
Validation of our code was done by comparing the output of the 1D model
to the output of the software provided by the NIST (Kline, 2006).
References
----------
#. A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
John Wiley and Sons, New York, (1955)
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:** S King and P Parker **Date:** 2013/09/09 and 2014/01/06
"""
import numpy as np
from numpy import inf
name = "sphere"
title = "Spheres with uniform scattering length density"
description = """\
P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
/(qr)^3]^2 + background
r: radius of sphere
V: The volume of the scatter
sld: the SLD of the sphere
sld_solvent: the SLD of the solvent
"""
category = "shape:sphere"
# ["name", "units", default, [lower, upper], "type","description"],
parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld",
"Layer scattering length density"],
["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld",
"Solvent scattering length density"],
["radius", "Ang", 50, [0, inf], "volume",
"Sphere radius"],
]
source = ["lib/sas_3j1x_x.c", "sphere.c"]
have_Fq = True
radius_effective_modes = ["radius"]
#single = False
def random():
"""Return a random parameter set for the model."""
radius = 10**np.random.uniform(1.3, 4)
pars = dict(
radius=radius,
)
return pars
#2345678901234567890123456789012345678901234567890123456789012345678901234567890
tests = [
[{}, 0.2, 0.726362], # each test starts with default parameter values
# inside { }, unless modified. Then Q and expected value of I(Q)
# putting None for an expected result will pass the test if there are no
# errors from the routine, but without any check on the value of the result
[{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
"radius": 120.},
[0.01, 0.1, 0.2], [1.34836265e+04, 6.20114062e+00, 1.04733914e-01]],
[{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
# careful tests here R=120 Pd=.2, then with S(Q) at default Reff=50
# (but this gets changed to 120) phi=0,2
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
[0.01, 0.1, 0.2], [1.74395295e+04, 3.68016987e+00, 2.28843099e-01]],
# a list of Q values and list of expected results is also possible
[{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
0.01, 335839.88055473, 1.41045057e+11, 120.0, 8087664.122641933, 1.0],
# the longer list here checks F1, F2, R_eff, volume, volume_ratio
[{"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
0.1, 482.93824329, 29763977.79867414, 120.0, 8087664.122641933, 1.0],
[{"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45},
0.2, 1.23330406, 1850806.1197361, 120.0, 8087664.122641933, 1.0],
# But note P(Q) = F2/volume
# F and F^2 are "unscaled", with for n <F F*>S(q) or for beta approx
# I(q) = n [<F F*> + <F><F*> (S(q) - 1)]
# for n the number density and <.> the orientation average, and
# F = integral rho(r) exp(i q . r) dr.
# The number density is volume fraction divided by particle volume.
# Effectively, this leaves F = V drho form, where form is the usual
# 3 j1(qr)/(qr) or whatever depending on the shape.
# @S RESULTS using F1 and F2 from the longer test string above:
#
# I(Q) = (F2 + F1^2*(S(Q) -1))*volfraction*scale/Volume + background
#
# with by default scale=1.0, background=0.001
# NOTE currently S(Q) volfraction is also included in scaling
# structure_factor_mode 0 = normal decoupling approx,
# 1 = beta(Q) approx
# radius_effective_mode 0 is for free choice,
# 1 is use radius from F2(Q)
# (sphere only has two choices, other models may have more)
[{"@S": "hardsphere",
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45, "volfraction": 0.2,
#"radius_effective":50.0, # hard sphere structure factor
"structure_factor_mode": 1, # mode 0 = normal decoupling approx,
# 1 = beta(Q) approx
"radius_effective_mode": 0 # this used default hardsphere Reff=50
}, [0.01, 0.1, 0.2], [1.32473756e+03, 7.36633631e-01, 4.67686201e-02]],
[{"@S": "hardsphere",
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
"volfraction": 0.2,
"radius_effective": 45.0, # explicit Reff over rides either 50 or 120
"structure_factor_mode": 1, # beta approx
"radius_effective_mode": 0 #
}, 0.01, 1316.2990966463444],
[{"@S": "hardsphere",
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
"volfraction": 0.2,
"radius_effective": 120.0, # over ride Reff
"structure_factor_mode": 1, # beta approx
"radius_effective_mode": 0 # (mode=1 here also uses 120)
}, [0.01, 0.1, 0.2], [1.57928589e+03, 7.37067923e-01, 4.67686197e-02]],
[{"@S": "hardsphere",
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
"volfraction": 0.2,
#"radius_effective": 120.0, # hard sphere structure factor
"structure_factor_mode": 0, # normal decoupling approximation
"radius_effective_mode": 1 # this uses 120 from the form factor
}, [0.01, 0.1, 0.2], [1.10112335e+03, 7.41366536e-01, 4.66630207e-02]],
[{"@S": "hardsphere",
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
"volfraction": 0.2,
#"radius_effective": 50.0, # hard sphere structure factor
"structure_factor_mode": 0, # normal decoupling approximation
"radius_effective_mode": 0 # this used 50 the default for hardsphere
}, [0.01, 0.1, 0.2], [7.82803598e+02, 6.85943611e-01, 4.71586457e-02]],
# Check returned intermediate results.
# Note: Target values come from double precision dll calculation.
# TODO: Cross check results against other software.
[{"@S": "hardsphere",
"radius": 120., "radius_pd": 0.2, "radius_pd_n": 45,
"volfraction": 0.2,
"radius_effective": 120.0, # hard sphere structure factor
"structure_factor_mode": 1, # normal decoupling approximation
"radius_effective_mode": 0, # mode 0 says ignore Reff from P
}, [0.01, 0.1, 0.2], [1.57928589e+03, 7.37067923e-01, 4.67686197e-02],
{"P(Q)": [3487.905895219423, 0.7360339734027279, 0.04576861975646704],
"S(Q)": [0.31569726516764035, 1.005886362143737, 0.9976927625183415],
#"beta(Q)": [0.7996623765645325, 0.007835960247334845, 8.218250904154009e-07],
"beta(Q)": None, # Single precision not good enough for 5 digits of beta
"S_eff(Q)": [0.4527888487743462, 1.0000461252997597, 0.9999999981038543],
"volume": 8087664.122641933,
"volume_ratio": 1.0,
"radius_effective": 0.0, # zero since mode is 0, and Reff isn't computed
}],
]
|