1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
r"""
Definition
----------
Similarly to the onion, this model provides the form factor, $P(q)$, for
a multi-shell sphere, where the interface between the each neighboring
shells can be described by the error function, power-law, or exponential
functions. The scattering intensity is computed by building a continuous
custom SLD profile along the radius of the particle. The SLD profile is
composed of a number of uniform shells with interfacial shells between them.
.. figure:: img/spherical_sld_profile.png
Example SLD profile
Unlike the :ref:`onion` model (using an analytical integration), the interfacial
shells here are sub-divided and numerically integrated assuming each
sub-shell is described by a line function, with *n_steps* sub-shells per
interface. The form factor is normalized by the total volume of the sphere.
.. note::
*n_shells* must be an integer. *n_steps* must be an ODD integer.
Interface shapes are as follows:
0: erf($\nu z$)
1: Rpow($z^\nu$)
2: Lpow($z^\nu$)
3: Rexp($-\nu z$)
4: Lexp($-\nu z$)
5: Boucher ($(1-z^2)^(\nu/2-2)$)
The form factor $P(q)$ in 1D is calculated by [#Feigin1987]_:
.. math::
P(q) = \frac{f^2}{V_\text{particle}} \text{ where }
f = f_\text{core} + \sum_{\text{inter}_i=0}^N f_{\text{inter}_i} +
\sum_{\text{flat}_i=0}^N f_{\text{flat}_i} +f_\text{solvent}
For a spherically symmetric particle with a particle density $\rho_x(r)$
the sld function can be defined as:
.. math::
f_x = 4 \pi \int_{0}^{\infty} \rho_x(r) \frac{\sin(qr)} {qr^2} r^2 dr
so that individual terms can be calculated as follows:
.. math::
f_\text{core}
&= 4 \pi \int_{0}^{r_\text{core}} \rho_\text{core}
\frac{\sin(qr)} {qr} r^2 dr \\
&= 3 \rho_\text{core} V(r_\text{core})
\left[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})}
{qr_\text{core}^3} \right] \\
f_{\text{inter}_i}
&= 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{inter}_i }
\frac{\sin(qr)} {qr} r^2 dr \\
f_{\text{shell}_i}
&= 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{flat}_i }
\frac{\sin(qr)} {qr} r^2 dr \\
&= 3 \rho_{\text{flat}_i} V (r_{\text{inter}_i}
+ \Delta t_{\text{inter}_i})
\left[
\frac{\sin(qr_{\text{inter}_i} + \Delta t_{\text{inter}_i})
- q (r_{\text{inter}_i} + \Delta t_{ \text{inter}_i })
\cos(q(r_{\text{inter}_i} + \Delta t_{\text{inter}_i}))}
{q ( r_{\text{inter}_i} + \Delta t_{\text{inter}_i} )^3 }
\right] \\
&\quad {} - 3 \rho_{ \text{flat}_i } V (r_{\text{inter}_i})
\left[
\frac{\sin(qr_{\text{inter}_i})
- qr_{\text{flat}_i} \cos(qr_{\text{inter}_i})}
{qr_{\text{inter}_i}^3}
\right] \\
f_\text{solvent}
&= 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent}
\frac{\sin(qr)} {qr} r^2 dr \\
&= 3 \rho_\text{solvent} V(r_N)
\left[ \frac{\sin(qr_N) - qr_N \cos(qr_N)} {qr_N^3} \right]
Here we assumed that the SLDs of the core and solvent are constant in $r$.
The SLD at the interface between shells, $\rho_{\text {inter}_i}$
is calculated with a function chosen by an user, where the functions are
Exp:
.. math::
\rho_{{inter}_i}(r) &=
\begin{cases}
B\, \exp\left(
\frac{\pm A(r - r_{\text{flat}_i})}{\Delta t_{\text{inter}_i}}
\right) + C & \mbox{for } A \neq 0 \\
B\, \left(
\frac{(r - r_{\text{flat}_i})}{\Delta t_{\text{inter}_i}}
\right) + C & \mbox{for } A = 0 \\
\end{cases}
Power-Law:
.. math::
\rho_{{inter}_i}(r) &=
\begin{cases}
\pm B\, \left(
\frac{(r - r_{\text{flat}_i})}{\Delta t_{ \text{inter}_i }}
\right) ^A + C & \mbox{for } A \neq 0 \\
\rho_{\text{flat}_{i+1}} & \mbox{for } A = 0 \\
\end{cases}
Erf:
.. math::
\rho_{{inter}_i}(r) =
\begin{cases}
B\, \text{erf} \left(
\frac{A(r - r_{\text{flat}_i})}{\sqrt{2} \Delta t_{\text{inter}_i}}
\right) + C & \mbox{for } A \neq 0 \\
B\, \left(
\frac{(r - r_{\text{flat}_i})}{\Delta t_{\text{inter}_i}}
\right) +C & \mbox{for } A = 0 \\
\end{cases}
Boucher[#Boucher1983]_:
.. math::
\rho_{{inter}_i}(r) =
\begin{cases}
\pm B\, \left(1-
(\frac{(r - r_{\text{flat}_i})}{\Delta t_{ \text{inter}_i }})^2
\right) ^(A/2-2) + C & \mbox{for } A \neq 0 \\
\rho_{\text{flat}_{i+1}} & \mbox{for } A = 0 \\
\end{cases}
The functions are normalized so that they vary between 0 and 1, and they are
constrained such that the SLD is continuous at the boundaries of the interface
as well as each sub-shell. Thus B and C are determined.
Once $\rho_{\text{inter}_i}$ is found at the boundary of the sub-shell of the
interface, we can find its contribution to the form factor $P(q)$
.. math::
f_{\text{inter}_i}
&= 4 \pi \int_{\Delta t_{\text{inter}_i} } \rho_{\text{inter}_i}
\frac{\sin(qr)}{qr} r^2 dr \\
&= 4 \pi \sum_{j=1}^{n_\text{steps}}
\int_{r_j}^{r_{j+1}} \rho_{\text{inter}_i}(r_j)
\frac{\sin(qr)}{qr} r^2 dr \\
&\approx 4 \pi \sum_{j=1}^{n_\text{steps}}
\Biggl[
3 (\rho_{\text{inter}_i}(r_{j+1}) - \rho_{\text{inter}_i}(r_{j})) V (r_j)
\left[
\frac{r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out})
- (\beta_\text{out}^2-2) \cos(\beta_\text{out})}
{\beta_\text{out}^4}
\right] \\
&\quad {} - 3 (\rho_{\text{inter}_i}(r_{j+1}) - \rho_{\text{inter}_i}(r_{j})) V(r_{j-1})
\left[
\frac{r_{j-1}^2 \sin(\beta_\text{in})
- (\beta_\text{in}^2-2) \cos(\beta_\text{in})}
{\beta_\text{in}^4}
\right] \\
&\quad {} + 3 \rho_{\text{inter}_i}(r_{j+1}) V(r_j)
\left[
\frac{\sin(\beta_\text{out}) - \cos(\beta_\text{out})}
{\beta_\text{out}^4}
\right] \\
&\quad {} - 3 \rho_{\text{inter}_i}(r_{j}) V(r_j)
\left[
\frac{\sin(\beta_\text{in}) - \cos(\beta_\text{in})}
{\beta_\text{in}^4}
\right]
\Biggr]
where
.. math::
:nowrap:
\begin{align*}
V(a) &= \frac {4\pi}{3}a^3
& {} & {} \\
a_\text{in} &\sim \frac{r_j}{r_{j+1} -r_j}
& a_\text{out} &\sim \frac{r_{j+1}}{r_{j+1} -r_j} \\
\beta_\text{in} &= qr_j
& \beta_\text{out} &= qr_{j+1}
\end{align*}
We assume $\rho_{\text{inter}_j} (r)$ is approximately linear
within the sub-shell $j$.
Finally the form factor can be calculated by
.. math::
P(q) = \frac{[f]^2} {V_\text{particle}} \mbox{ where } V_\text{particle}
= V(r_{\text{shell}_N})
For 2D data the scattering intensity is calculated in the same way as 1D,
where the $q$ vector is defined as
.. math::
q = \sqrt{q_x^2 + q_y^2}
.. note::
The outer most radius is used as the effective radius for $S(Q)$
when $P(Q) * S(Q)$ is applied.
References
----------
.. [#Feigin1987] L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray
and Neutron Scattering, Plenum Press, New York, (1987)
.. [#Boucher1983] B Boucher, P Chieux, P Convert, and M Tournarie,
*Metal Physics*, 13,1339 (1983).
Authorship and Verification
---------------------------
* **Author:** Jae-Hie Cho **Date:** Nov 1, 2010
* **Last Modified by:** Paul Kienzle **Date:** Dec 20, 2016
* **Last Reviewed by:** Steve King **Date:** March 29, 2019
"""
import numpy as np
from numpy import inf, expm1, sqrt
from scipy.special import erf
name = "spherical_sld"
title = "Spherical SLD intensity calculation"
description = """
I(q) =
background = Incoherent background [1/cm]
"""
category = "shape:sphere"
SHAPES = ["erf(|nu|*z)", "Rpow(z^|nu|)", "Lpow(z^|nu|)",
"Rexp(-|nu|z)", "Lexp(-|nu|z)", "Boucher((1-z^2)^(1/2*nu-2))",]
# pylint: disable=bad-whitespace, line-too-long
# ["name", "units", default, [lower, upper], "type", "description"],
parameters = [["n_shells", "", 1, [1, 10], "volume", "number of shells (must be integer)"],
["sld_solvent", "1e-6/Ang^2", 1.0, [-inf, inf], "sld", "solvent sld"],
["sld[n_shells]", "1e-6/Ang^2", 4.06, [-inf, inf], "sld", "sld of the shell"],
["thickness[n_shells]", "Ang", 100.0, [0, inf], "volume", "thickness shell"],
["interface[n_shells]", "Ang", 50.0, [0, inf], "volume", "thickness of the interface"],
["shape[n_shells]", "", 0, [SHAPES], "", "interface shape"],
["nu[n_shells]", "", 2.5, [1, inf], "", "interface shape exponent"],
["n_steps", "", 35, [0, inf], "", "number of steps in each interface (must be an odd integer)"],
]
# pylint: enable=bad-whitespace, line-too-long
source = ["lib/polevl.c", "lib/sas_erf.c", "lib/sas_3j1x_x.c", "spherical_sld.c"]
single = False # TODO: fix low q behaviour
have_Fq = True
radius_effective_modes = ["outer radius"]
profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)']
SHAPE_FUNCTIONS = [
lambda z, nu: erf(nu/sqrt(2)*(2*z-1))/(2*erf(nu/sqrt(2))) + 0.5, # erf
lambda z, nu: z**nu, # Rpow
lambda z, nu: 1 - (1-z)**nu, # Lpow
lambda z, nu: expm1(-nu*z)/expm1(-nu), # Rexp
lambda z, nu: expm1(nu*z)/expm1(nu), # Lexp
lambda z, nu: 1 - (1 - z**2)**(0.5*nu-2.0), # Boucher
]
def profile(n_shells, sld_solvent, sld, thickness,
interface, shape, nu, n_steps):
"""
Returns shape profile with x=radius, y=SLD.
"""
n_shells = int(n_shells + 0.5)
n_steps = int(n_steps + 0.5)
z = []
rho = []
z_next = 0
# two sld points for core
z.append(z_next)
rho.append(sld[0])
for i in range(0, n_shells):
z_next += thickness[i]
z.append(z_next)
rho.append(sld[i])
dz = interface[i]/n_steps
sld_l = sld[i]
sld_r = sld[i+1] if i < n_shells-1 else sld_solvent
fun = SHAPE_FUNCTIONS[int(np.clip(shape[i], 0, len(SHAPE_FUNCTIONS)-1))]
for step in range(1, n_steps+1):
portion = fun(float(step)/n_steps, max(abs(nu[i]), 1e-14))
z_next += dz
z.append(z_next)
rho.append((sld_r - sld_l)*portion + sld_l)
z.append(z_next*1.2)
rho.append(sld_solvent)
# return sld profile (r, beta)
return np.asarray(z), np.asarray(rho)
# TODO: no random parameter generator for spherical SLD.
# Another interesting demo case, again because the default function is boring.
demo = {
"n_shells": 5,
"n_steps": 35.0,
"sld_solvent": 1.0,
"sld": [2.07, 4.0, 3.5, 4.0, 3.5],
"thickness": [50.0, 100.0, 100.0, 100.0, 100.0],
"interface": [50.0]*5,
"shape": [0]*5,
"nu": [2.5]*5,
}
tests = [
# Results checked against sasview 3.1
[{"n_shells": 5,
"n_steps": 35,
"sld_solvent": 1.0,
"sld": [2.07, 4.0, 3.5, 4.0, 3.5],
"thickness": [50.0, 100.0, 100.0, 100.0, 100.0],
"interface": [50]*5,
"shape": [0]*5,
"nu": [2.5]*5,
}, 0.001, 750697.238],
]
|