File: SasView_ellipsoid.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (613 lines) | stat: -rw-r--r-- 17,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SasView_ellipsoid
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView ellipsoid model component as sample description.
*
* %Description
*
* SasView_ellipsoid component, generated from ellipsoid.c in sasmodels.
*
* Example: 
*  SasView_ellipsoid(sld, sld_solvent, radius_polar, radius_equatorial, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_radius_polar=0.0, pd_radius_equatorial=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* sld: [1e-6/Ang^2] ([-inf, inf]) Ellipsoid scattering length density.
* sld_solvent: [1e-6/Ang^2] ([-inf, inf]) Solvent scattering length density.
* radius_polar: [Ang] ([0, inf]) Polar radius.
* radius_equatorial: [Ang] ([0, inf]) Equatorial radius.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius_polar: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_radius_equatorial: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_ellipsoid

SETTING PARAMETERS (
        sld=4,
        sld_solvent=1,
        radius_polar=20,
        radius_equatorial=400,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_radius_polar=0.0,
        pd_radius_equatorial=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel ellipsoid */
#define HAS_Iqac
#define HAS_FQ
#define FORM_VOL

#ifndef SAS_HAVE_sas_3j1x_x
#define SAS_HAVE_sas_3j1x_x

#line 1 "sas_3j1x_x"
/**
* Spherical Bessel function 3*j1(x)/x
*
* Used for low q to avoid cancellation error.
* Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
* in this case it is likely cancellation errors in the original expression
* using double precision that are the source.
*/
double sas_3j1x_x(double q);

// The choice of the number of terms in the series and the cutoff value for
// switching between series and direct calculation depends on the numeric
// precision.
//
// Point where direct calculation reaches machine precision:
//
//   single machine precision eps 3e-8 at qr=1.1 **
//   double machine precision eps 4e-16 at qr=1.1
//
// Point where Taylor series reaches machine precision (eps), where taylor
// series matches direct calculation (cross) and the error at that point:
//
//   prec   n eps  cross  error
//   single 3 0.28  0.4   6.2e-7
//   single 4 0.68  0.7   2.3e-7
//   single 5 1.18  1.2   7.5e-8
//   double 3 0.01  0.03  2.3e-13
//   double 4 0.06  0.1   3.1e-14
//   double 5 0.16  0.2   5.0e-15
//
// ** Note: relative error on single precision starts increase on the direct
// method at qr=1.1, rising from 3e-8 to 5e-5 by qr=1e3.  This should be
// safe for the sans range, with objects of 100 nm supported to a q of 0.1
// while maintaining 5 digits of precision.  For usans/sesans, the objects
// are larger but the q is smaller, so again it should be fine.
//
// See explore/sph_j1c.py for code to explore these ranges.

// Use 4th order series
#if FLOAT_SIZE>4
#define SPH_J1C_CUTOFF 0.1
#else
#define SPH_J1C_CUTOFF 0.7
#endif
#pragma acc routine seq
double sas_3j1x_x(double q)
{
    // 2017-05-18 PAK - support negative q
    if (fabs(q) < SPH_J1C_CUTOFF) {
        const double q2 = q*q;
        return (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))));// + q2*(3./3991680.)))));
    } else {
        double sin_q, cos_q;
        SINCOS(q, sin_q, cos_q);
        return 3.0*(sin_q/q - cos_q)/(q*q);
    }
}


#endif // SAS_HAVE_sas_3j1x_x


#ifndef SAS_HAVE_gauss76
#define SAS_HAVE_gauss76

#line 1 "gauss76"
// Created by Andrew Jackson on 4/23/07

 #ifdef GAUSS_N
 # undef GAUSS_N
 # undef GAUSS_Z
 # undef GAUSS_W
 #endif
 #define GAUSS_N 76
 #define GAUSS_Z Gauss76Z
 #define GAUSS_W Gauss76Wt

// Gaussians
constant double Gauss76Wt[76] = {
	.00126779163408536,		//0
	.00294910295364247,
	.00462793522803742,
	.00629918049732845,
	.00795984747723973,
	.00960710541471375,
	.0112381685696677,
	.0128502838475101,
	.0144407317482767,
	.0160068299122486,
	.0175459372914742,		//10
	.0190554584671906,
	.020532847967908,
	.0219756145344162,
	.0233813253070112,
	.0247476099206597,
	.026072164497986,
	.0273527555318275,
	.028587223650054,
	.029773487255905,
	.0309095460374916,		//20
	.0319934843404216,
	.0330234743977917,
	.0339977794120564,
	.0349147564835508,
	.0357728593807139,
	.0365706411473296,
	.0373067565423816,
	.0379799643084053,
	.0385891292645067,
	.0391332242205184,		//30
	.0396113317090621,
	.0400226455325968,
	.040366472122844,
	.0406422317102947,
	.0408494593018285,
	.040987805464794,
	.0410570369162294,
	.0410570369162294,
	.040987805464794,
	.0408494593018285,		//40
	.0406422317102947,
	.040366472122844,
	.0400226455325968,
	.0396113317090621,
	.0391332242205184,
	.0385891292645067,
	.0379799643084053,
	.0373067565423816,
	.0365706411473296,
	.0357728593807139,		//50
	.0349147564835508,
	.0339977794120564,
	.0330234743977917,
	.0319934843404216,
	.0309095460374916,
	.029773487255905,
	.028587223650054,
	.0273527555318275,
	.026072164497986,
	.0247476099206597,		//60
	.0233813253070112,
	.0219756145344162,
	.020532847967908,
	.0190554584671906,
	.0175459372914742,
	.0160068299122486,
	.0144407317482767,
	.0128502838475101,
	.0112381685696677,
	.00960710541471375,		//70
	.00795984747723973,
	.00629918049732845,
	.00462793522803742,
	.00294910295364247,
	.00126779163408536		//75 (indexed from 0)
};

constant double Gauss76Z[76] = {
	-.999505948362153,		//0
	-.997397786355355,
	-.993608772723527,
	-.988144453359837,
	-.981013938975656,
	-.972229228520377,
	-.961805126758768,
	-.949759207710896,
	-.936111781934811,
	-.92088586125215,
	-.904107119545567,		//10
	-.885803849292083,
	-.866006913771982,
	-.844749694983342,
	-.822068037328975,
	-.7980001871612,
	-.77258672828181,
	-.74587051350361,
	-.717896592387704,
	-.688712135277641,
	-.658366353758143,		//20
	-.626910417672267,
	-.594397368836793,
	-.560882031601237,
	-.526420920401243,
	-.491072144462194,
	-.454895309813726,
	-.417951418780327,
	-.380302767117504,
	-.342012838966962,
	-.303146199807908,		//30
	-.263768387584994,
	-.223945802196474,
	-.183745593528914,
	-.143235548227268,
	-.102483975391227,
	-.0615595913906112,
	-.0205314039939986,
	.0205314039939986,
	.0615595913906112,
	.102483975391227,			//40
	.143235548227268,
	.183745593528914,
	.223945802196474,
	.263768387584994,
	.303146199807908,
	.342012838966962,
	.380302767117504,
	.417951418780327,
	.454895309813726,
	.491072144462194,		//50
	.526420920401243,
	.560882031601237,
	.594397368836793,
	.626910417672267,
	.658366353758143,
	.688712135277641,
	.717896592387704,
	.74587051350361,
	.77258672828181,
	.7980001871612,	//60
	.822068037328975,
	.844749694983342,
	.866006913771982,
	.885803849292083,
	.904107119545567,
	.92088586125215,
	.936111781934811,
	.949759207710896,
	.961805126758768,
	.972229228520377,		//70
	.981013938975656,
	.988144453359837,
	.993608772723527,
	.997397786355355,
	.999505948362153		//75
};


#pragma acc declare copyin(Gauss76Wt[0:76], Gauss76Z[0:76])

#endif // SAS_HAVE_gauss76


#ifndef SAS_HAVE_ellipsoid
#define SAS_HAVE_ellipsoid

#line 1 "ellipsoid"
static double
form_volume_ellipsoid(double radius_polar, double radius_equatorial)
{
    return M_4PI_3*radius_polar*radius_equatorial*radius_equatorial;
}

static double
radius_from_volume_ellipsoid(double radius_polar, double radius_equatorial)
{
    return cbrt(radius_polar*radius_equatorial*radius_equatorial);
}

static double
radius_from_curvature_ellipsoid(double radius_polar, double radius_equatorial)
{
    // Trivial cases
    if (radius_polar == radius_equatorial) return radius_polar;
    if (radius_polar * radius_equatorial == 0.)  return 0.;

    // see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449
    const double ratio = (radius_polar < radius_equatorial
                          ? radius_polar / radius_equatorial
                          : radius_equatorial / radius_polar);
    const double e1 = sqrt(1.0 - ratio*ratio);
    const double b1 = 1.0 + asin(e1) / (e1 * ratio);
    const double bL = (1.0 + e1) / (1.0 - e1);
    const double b2 = 1.0 + 0.5 * ratio * ratio / e1 * log(bL);
    const double delta = 0.75 * b1 * b2;
    const double ddd = 2.0 * (delta + 1.0) * radius_polar * radius_equatorial * radius_equatorial;
    return 0.5 * cbrt(ddd);
}

static double
radius_effective_ellipsoid(int mode, double radius_polar, double radius_equatorial)
{
    switch (mode) {
    default:
    case 1: // average curvature
        return radius_from_curvature_ellipsoid(radius_polar, radius_equatorial);
    case 2: // equivalent volume sphere
        return radius_from_volume_ellipsoid(radius_polar, radius_equatorial);
    case 3: // min radius
        return (radius_polar < radius_equatorial ? radius_polar : radius_equatorial);
    case 4: // max radius
        return (radius_polar > radius_equatorial ? radius_polar : radius_equatorial);
    }
}


static void
Fq_ellipsoid(double q,
    double *F1,
    double *F2,
    double sld,
    double sld_solvent,
    double radius_polar,
    double radius_equatorial)
{
    // Using ratio v = Rp/Re, we can implement the form given in Guinier (1955)
    //     i(h) = int_0^pi/2 Phi^2(h a sqrt(cos^2 + v^2 sin^2) cos dT
    //          = int_0^pi/2 Phi^2(h a sqrt((1-sin^2) + v^2 sin^2) cos dT
    //          = int_0^pi/2 Phi^2(h a sqrt(1 + sin^2(v^2-1)) cos dT
    // u-substitution of
    //     u = sin, du = cos dT
    //     i(h) = int_0^1 Phi^2(h a sqrt(1 + u^2(v^2-1)) du
    const double v_square_minus_one = square(radius_polar/radius_equatorial) - 1.0;
    // translate a point in [-1,1] to a point in [0, 1]
    // const double u = GAUSS_Z[i]*(upper-lower)/2 + (upper+lower)/2;
    const double zm = 0.5;
    const double zb = 0.5;
    double total_F2 = 0.0;
    double total_F1 = 0.0;
    for (int i=0;i<GAUSS_N;i++) {
        const double u = GAUSS_Z[i]*zm + zb;
        const double r = radius_equatorial*sqrt(1.0 + u*u*v_square_minus_one);
        const double f = sas_3j1x_x(q*r);
        total_F2 += GAUSS_W[i] * f * f;
        total_F1 += GAUSS_W[i] * f;
    }
    // translate dx in [-1,1] to dx in [lower,upper]
    total_F1 *= zm;
    total_F2 *= zm;
    const double s = (sld - sld_solvent) * form_volume_ellipsoid(radius_polar, radius_equatorial);
    *F1 = 1e-2 * s * total_F1;
    *F2 = 1e-4 * s * s * total_F2;
}

static double
Iqac_ellipsoid(double qab, double qc,
    double sld,
    double sld_solvent,
    double radius_polar,
    double radius_equatorial)
{
    const double qr = sqrt(square(radius_equatorial*qab) + square(radius_polar*qc));
    const double f = sas_3j1x_x(qr);
    const double s = (sld - sld_solvent) * form_volume_ellipsoid(radius_polar, radius_equatorial);

    return 1.0e-4 * square(f * s);
}


#endif // SAS_HAVE_ellipsoid



/* END Required header for SASmodel ellipsoid */
%}
    DECLARE
%{
  double shape;
  double my_a_v;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  my_a_v = model_abs*2200*100; /* Is not yet divided by v. 100: Convert barns -> fm^2 */

%}


TRACE
%{
  double t0, t1, v, l_full, l, l_1, dt, d_phi, my_s;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
  double f, solid_angle, vx_i, vy_i, vz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection neutron trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, R);}
  if(intersect)
  {
    if(t0 < 0)
      ABSORB;

    /* Neutron enters at t=t0. */
    v = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v * (t1 - t0);          /* Length of full path through sample */
    dt = rand01()*(t1 - t0) + t0;    /* Time of scattering */
    PROP_DT(dt);                     /* Point of scattering */
    l = v*(dt-t0);                   /* Penetration in sample */

    vx_i=vx;
    vy_i=vy;
    vz_i=vz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(vx, vy, vz);
    vx *= v;
    vy *= v;
    vz *= v;
    qx = V2K*(vx_i-vx);
    qy = V2K*(vy_i-vy);
    qz = V2K*(vz_i-vz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_radius_polar=radius_polar;
    double trace_radius_equatorial=radius_equatorial;
    if ( pd_radius_polar!=0.0 || pd_radius_equatorial!=0.0 ){
    trace_radius_polar = (randnorm()*pd_radius_polar+1.0)*radius_polar;
    trace_radius_equatorial = (randnorm()*pd_radius_equatorial+1.0)*radius_equatorial;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    double F1=0.0, F2=0.0;
    Fq_ellipsoid(q, &F1, &F2, sld, sld_solvent, trace_radius_polar, trace_radius_equatorial);
    Iq_out = F2;


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McStas: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    l_1 = v*t1;
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_v*(l+l_1)/v);
    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END