File: SasView_mono_gauss_coil.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (319 lines) | stat: -rw-r--r-- 9,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SasView_mono_gauss_coil
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView mono_gauss_coil model component as sample description.
*
* %Description
*
* SasView_mono_gauss_coil component, generated from mono_gauss_coil.c in sasmodels.
*
* Example: 
*  SasView_mono_gauss_coil(i_zero, rg, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_rg=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* i_zero: [1/cm] ([0.0, inf]) Intensity at q=0.
* rg: [Ang] ([0.0, inf]) Radius of gyration.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_rg: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_mono_gauss_coil

SETTING PARAMETERS (
        i_zero=70.0,
        rg=75.0,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_rg=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel mono_gauss_coil */
#define HAS_Iq
#define FORM_VOL

#ifndef SAS_HAVE_mono_gauss_coil
#define SAS_HAVE_mono_gauss_coil

#line 1 "mono_gauss_coil"
static double
form_volume_mono_gauss_coil(double rg)
{
    return 1.0;
}

static double
radius_effective_mono_gauss_coil(int mode, double rg)
{
    switch (mode) {
    default:
    case 1: // R_g
        return rg;
    case 2: // 2R_g
        return 2.0*rg;
    case 3: // 3R_g
        return 3.0*rg;
    case 4: // (5/3)^0.5*R_g
        return sqrt(5.0/3.0)*rg;
    }
}

static double
gauss_coil(double qr)
{
    const double x = qr*qr;

    // Use series expansion at low q for higher accuracy. We could use
    // smaller polynomials if we sacrifice some digits of precision or
    // introduce an additional series expansion around x == 1.
    // See explore/precision.py, gauss_coil function.
#if FLOAT_SIZE>4 // DOUBLE_PRECISION
    // For double precision: use O(5) Pade with 0.5 cutoff (10 mad + 1 divide)
    if (x < 0.5) {
        // PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 8}]
        const double A1=1./12., A2=2./99., A3=1./2640., A4=1./23760., A5=-1./1995840.;
        const double B1=5./12., B2=5./66., B3=1./132., B4=1./2376., B5=1./95040.;
        return (((((A5*x + A4)*x + A3)*x + A2)*x + A1)*x + 1.)
                / (((((B5*x + B4)*x + B3)*x + B2)*x + B1)*x + 1.);
    }
#else
    // For single precision: use O(7) Taylor with 0.8 cutoff (7 mad)
    if (x < 0.8) {
        const double C0 = +1.;
        const double C1 = -1./3.;
        const double C2 = +1./12.;
        const double C3 = -1./60.;
        const double C4 = +1./360.;
        const double C5 = -1./2520.;
        const double C6 = +1./20160.;
        const double C7 = -1./181440.;
        return ((((((C7*x + C6)*x + C5)*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
    }
#endif

    return 2.0 * (expm1(-x) + x)/(x*x);
}

static double
Iq_mono_gauss_coil(double q, double i_zero, double rg)
{
    return i_zero * gauss_coil(q*rg);
}


#endif // SAS_HAVE_mono_gauss_coil



/* END Required header for SASmodel mono_gauss_coil */
%}
    DECLARE
%{
  double shape;
  double my_a_v;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  my_a_v = model_abs*2200*100; /* Is not yet divided by v. 100: Convert barns -> fm^2 */

%}


TRACE
%{
  double t0, t1, v, l_full, l, l_1, dt, d_phi, my_s;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
  double f, solid_angle, vx_i, vy_i, vz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection neutron trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, R);}
  if(intersect)
  {
    if(t0 < 0)
      ABSORB;

    /* Neutron enters at t=t0. */
    v = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v * (t1 - t0);          /* Length of full path through sample */
    dt = rand01()*(t1 - t0) + t0;    /* Time of scattering */
    PROP_DT(dt);                     /* Point of scattering */
    l = v*(dt-t0);                   /* Penetration in sample */

    vx_i=vx;
    vy_i=vy;
    vz_i=vz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(vx, vy, vz);
    vx *= v;
    vy *= v;
    vz *= v;
    qx = V2K*(vx_i-vx);
    qy = V2K*(vy_i-vy);
    qz = V2K*(vz_i-vz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_rg=rg;
    if ( pd_rg!=0.0 ){
    trace_rg = (randnorm()*pd_rg+1.0)*rg;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    Iq_out = Iq_mono_gauss_coil(q, i_zero, trace_rg);


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McStas: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    l_1 = v*t1;
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_v*(l+l_1)/v);
    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END