File: ESS_butterfly-lib.c

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (341 lines) | stat: -rw-r--r-- 14,305 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2013, All rights reserved
*         DTU Physics, Lyngby, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Library: share/ESS_butterfly-lib.c
*
* %Identification
* Written by: PW
* Date: Nov 7, 2013
* Origin: DTU Physics
* Release: McStas 2.1
* Version: 0.1
*
* This file is to be imported by the ESS_moderator_long component
* It defines a set of brilliance definitions (used via function pointer) for
* easier use of the component.
*
* Usage: within SHARE
* %include "ESS_butterfly-lib"
*
*******************************************************************************/

#ifndef ESS_BUTTERFLY_LIB_H
#error McStas : please import this library with %include "ESS_butterfly-lib"
#endif

#ifdef OPENACC
#define exit(...) noprintf()
#endif

#pragma acc routine seq
double ESS_2015_Schoenfeldt_cold_spectrum(double lambda,double theta){
  if(lambda<=0)return 0;
  double par0=8.44e13/25.;
  double par1=2.5;
  double par2=2.2;
  
  double par3=-13.-.5*(theta-5);
  double par4=2.53;
  double par5=-0.0478073-0.160*exp(-0.45186*(theta-5.)/10.);
  
  double par6;
  if(theta==5)par6=5.73745e+015/25.;
  else if(theta==15)par6=5.88284e+015/25.;
  else if(theta==25)par6=6.09573e+015/25.;
  else if(theta==35)par6=6.29116e+015/25.;
  else if(theta==45)par6=6.03436e+015/25.;
  else if(theta==55)par6=6.02045e+015/25.;
  double par7=0.788956+0.00854184*(theta-5.)/10.;
  double par8=0.0461868-0.0016464*(theta-5.)/10.;
  double par9=0.325;
  
  double SD_part=par0/((1+exp(par1*(lambda-par2)))*lambda);
  double para_part=pow((1+exp(par3*(lambda-par4))),par5)*(par6*(exp(-par7*(lambda))+par8*exp(-par9*(lambda))));
  return para_part+SD_part;
  
}
#pragma acc routine seq
double ESS_2015_Schoenfeldt_thermal_spectrum(double lambda, double theta){
    if(lambda<=0)return 0;
    double i=(theta-5.)/10.;
    double par0=4.2906e+013-9.2758e+011*i+8.02603e+011*i*i-1.29523e+011*i*i*i;
    double par2=6.24806e+012-8.84602e+010*i;
    double par3=-0.31107+0.0221138*i;
    double aOlsqr=949./(325*lambda*lambda);
    return par0*2.*aOlsqr*aOlsqr/lambda*pow(lambda,-par3)*exp(-aOlsqr)+par2/((1+exp(2.5*(lambda-0.88)))*lambda);
	  
}


/* This is ESS_2014_Schoenfeldt_cold_y0 - vertical intensity distribution for the 2014 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2014_Schoenfeldt_cold_y0(double y0,double height){
  
  double one_over_integral_y0_of_height= height/((0.36434*height*height+2.53796*height-0.107774));
  if(y0 < -height/2. || y0 > height/2. )return 0;
  double cosh_ish=(exp(-7e-1/sqrt(height)*(y0-height/2.))+exp(-7e-1/20.*height+7e-1/sqrt(height)*(y0+height/2.)));
  double sinh_ish=(exp(50/sqrt(height)*(y0-height/2.))-1)*(exp(-50/sqrt(height)*(y0+height/2.))-1);
  double tmp=one_over_integral_y0_of_height*cosh_ish*sinh_ish;
  return tmp;
} /* end of ESS_2014_Schoenfeldt_cold_y0 */

/* This is ESS_2014_Schoenfeldt_thermal_y0 - vertical intensity distribution for the 2014 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2014_Schoenfeldt_thermal_y0(double y0,double height){
  /* Placeholder - we assume that this distribution is flat for now */
  return 1;
} /* end of ESS_2014_Schoenfeldt_thermal_y0 */

/* This is ESS_2014_Schoenfeldt_cold_x0 - horizontal intensity distribution for the 2014 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2014_Schoenfeldt_cold_x0(double x0,double height, double width){
  double normalization=1;
  if(x0<-width||x0>width)return 0;
  return normalization*(0.008*x0+1)*(exp(height/2.*(x0-width/2))-1)*(exp(-height/2.*(x0+width/2))-1);
} /* end of ESS_2014_Schoenfeldt_cold_x0 */

/* This is ESS_2014_Schoenfeldt_thermal_x0 - horizontal intensity distribution for the 2014 Schoenfeldt cold moderator */

double ESS_2014_Schoenfeldt_thermal_x0(double x0,double height, double width){
  // Kept for reference only...
  /* if(x0>-width&&x0<width)return 0; */
  /* if(x0<0)return fmax(0,2.5*(0.0524986*fabs(x0)-1.84817-0.0189762*height+(-1.49712e+002*exp(-4.06814e-001*height))*exp(-4.48657e-001*fabs(x0)))*(exp(7*(x0+width))-1)); */
  /* return fmax(0,2.5*(0.84199+0.00307022*height)*(0.0524986*fabs(x0)-1.84817-0.0189762*height+(-1.49712e+002*exp(-4.06814e-001*height))*exp(-4.48657e-001*fabs(x0)))*(exp(-7*(x0-width))-1)); */  
  if(x0>-23./2.&&x0<23./2.)return 0;
  long double cosh_ish=fmin(0.0524986*fabs(x0)-1.84817-0.0189762*height+(-1.49712e+002*exp(-4.06814e-001*height))*exp(-4.48657e-001*fabs(x0)),0);
  if(x0<0)return (-1.73518e-003*height*height+2.10277e-002*height+7.65692e-001) // intensity
	    *cosh_ish*(exp(7.*(x0+23./2.))-1); // slope 
  return (-1.73518e-003*height*height+2.10277e-002*height+7.65692e-001) // intensity
    *(0.84199+0.00307022*height) // asumetry
    *cosh_ish*(exp(-7.*(x0-23./2.))-1); // slope
} /* end of ESS_2014_Schoenfeldt_thermal_x0 */

/* This is the thermal moderator with 2015 updates, fits from Troels Schoenfeldt */
#pragma acc routine seq
void ESS_2015_Schoenfeldt_thermal(double *t, double *p, double lambda, double tfocus_w, double tfocus_t, double tfocus_dt, double height_t, double Mwidth_t, double height_c, double Mwidth_c, double tmultiplier, double beamportangle, double X, double Y)
{
  if ((height_t == 0.03) || (height_t == 0.06)) {
    *p = ESS_2015_Schoenfeldt_thermal_spectrum(lambda, beamportangle);
  } else {
    printf("Sorry! Moderator height must be either %g or %g m\n",0.03,0.06);
    exit(-1);
  }

  /* Troels Schoenfeldt function for timestructure */
  *p *= tmultiplier*ESS_2015_Schoenfeldt_thermal_timedist(*t, lambda, 3 /* cm height */, ESS_SOURCE_DURATION);  
  if (height_c == 0.03) {
    // 3cm case
    *p *= ESS_2015_Schoenfeldt_thermal_y0(100*Y) * ESS_2015_Schoenfeldt_thermal_x0(100*X, beamportangle, Mwidth_t);
  } else {
    // 6cm case
    // Downscale brightness by factor from 
    // "New ESS Moderator Baseline", Ken Andersen, 9/4/2015
    *p *= (6.2e14/9.0e14);
    *p *= ESS_2014_Schoenfeldt_thermal_y0(100*Y, 100*height_c) * ESS_2015_Schoenfeldt_thermal_x0(100*X, beamportangle, Mwidth_t);
  }
} /* end of ESS_2015_Schoenfeldt_thermal */


/* This is the cold moderator with 2015 updates, fits from Troels Schoenfeldt */
/* Parametrization including moderator height for the "pancake" moderator */
#pragma acc routine seq
void ESS_2015_Schoenfeldt_cold(double *t, double *p, double lambda, double tfocus_w, double tfocus_t, double tfocus_dt, double height_t, double Mwidth_t, double height_c, double Mwidth_c, double tmultiplier, double beamportangle, double X, double Y)
{
   if ((height_c == 0.03) || (height_c == 0.06)) {
    *p = ESS_2015_Schoenfeldt_cold_spectrum(lambda,beamportangle);
  } else {
    printf("Sorry! Moderator height must be either %g or %g m\n",0.03,0.06);
    exit(-1);
  }

  /* Troels Schoenfeldt function for timestructure */
  *p *= tmultiplier*ESS_2015_Schoenfeldt_cold_timedist(*t, lambda, 3 /* cm height */, ESS_SOURCE_DURATION);
  
  if (height_c == 0.03) {
    // 3cm case
    *p *= ESS_2015_Schoenfeldt_cold_y0(100*Y) * ESS_2015_Schoenfeldt_cold_x0(100*X, beamportangle, Mwidth_c);
  } else {
    // 6cm case
    // Downscale brightness by factor from 
    // "New ESS Moderator Baseline", Ken Andersen, 9/4/2015
    *p *= (10.1e14/16.0e14);
    *p *= ESS_2014_Schoenfeldt_cold_y0(100*Y, 100*height_c) * ESS_2015_Schoenfeldt_cold_x0(100*X, beamportangle, Mwidth_c);
  }
} /* end of ESS_2015_Schoenfeldt_cold */

/* This is ESS_2015_Schoenfeldt_cold_y0 - vertical intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_cold_y0(double y0){
    double par3=30;
    double par4=.35;
    double cosh_ish=exp(-par4*y0)+exp(par4*y0);
    double sinh_ish=pow(1+exp(par3*(y0-3./2.)),-1)*pow(1+exp(-par3*(y0+3./2.)),-1);
    return 1./2.*(double)((double)cosh_ish*(double)sinh_ish);

} /* end of ESS_2015_Schoenfeldt_cold_y0 */

/* This is ESS_2015_Schoenfeldt_thermal_y0 - vertical intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_thermal_y0(double y0){
    if(y0<-3./2.+0.105){
        return 1.005*exp(-pow((y0+3./2.-0.105)/0.372,2));
    } else if(y0>3./2.-0.105){
        return 1.005*exp(-pow((y0-3./2.+0.105)/0.372,2));
    }
    return 1.005;
} /* end of ESS_2015_Schoenfeldt_thermal_y0 */

/* This is ESS_2015_Schoenfeldt_cold_x0 - horizontal intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_cold_x0(double x0,double theta, double width){
  // GEOMETRY / SAMPLING SPACE
    double i=(theta-5.)/10.;
    double par0=0.0146115+0.00797729*i-0.00279541*i*i;
    double par1=0.980886;
    if(i==1)par1=0.974217;
    if(i==2)par1=0.981462;
    if(i==3)par1=1.01466;
    if(i==4)par1=1.11707;
    if(i==5)par1=1.16057;
        
    double par2=-4-.75*i;
    if(i==0)par2=-20;
    double par3=-14.9402-0.178369*i+0.0367007*i*i;
    if(i==0)par3*=0.95;
    double par4=-15;
    if(i==3)par4=-3.5;
    if(i==5)par4=-1.9;
    double par5=-7.07979+0.0835695*i-0.0546662*i*i;
    if(i==5)par5*=0.85;
    
    //printf("Angle %g, width is %g\n",theta,width,cos(theta*DEG2RAD)*width);
    //if(i==4) width=width+0.3;
    //if(i==5) width=width-0.7;

    /* Rescaling to achieve a BF1 model */
    double tmp=(par5-par3)/width;
    //printf("Cold x0 in BF1 units: %g,",x0);
    x0=x0*tmp-7.16;
    //printf("x0 in BF2 units: %g, moderator width is %g from %g\n",x0,width,par5-par3);

    /* if (x0<=par5 && x0>=par3) */
    /*   return 1; */
    /* else */
    /*   return 0; */
    

    double line=par0*(x0+12)+par1;
    double CutLeftCutRight=1./((1+exp(par2*(x0-par3)))*(1+exp(-par4*(x0-par5))));

    return line*CutLeftCutRight;
} /* end of ESS_2015_Schoenfeldt_cold_x0 */

/* This is ESS_2015_Schoenfeldt_thermal_x0 - horizontal intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_thermal_x0(double x0,double theta, double width){
    double i=(theta-5.)/10.;
    double par0=-5.54775+0.492804*i;
    double par1=-0.265929-0.711477*i;
    if(theta==55)par1=-2.55;

    double par2=0.821885+0.00914832*i;
    double par3=1.31108-0.00698647*i;
    if(theta==55)par3=1.23;
    double par4=-.035;
    double par5=-0.0817358+0.00807125*i;
        
    double par6=-8;
    double par7=-7.15;
    if(theta==45)par7=-8.2;
    if(theta==55)par7=-7.7;

    double par8=-8;
    double par9=7.15;
    if(theta==45)par9=7.5;
    if(theta==55)par9=8.2;

    /* Rescaling to achieve a BF1 model */
    double tmp=(par9-par7)/width;
    //printf("Thermal x0 in BF1 units: %g,",x0);
    x0=x0*tmp-7.16;
    //printf(" x0 in BF2 units: %g, moderator width is %g from %g\n",x0,width,par9-par7);
    
    /* if (x0<=par9 && x0>=par7) */
    /*   return 1; */
    /* else */
    /*   return 0; */
    
    double soften1=1./(1+exp(8.*(x0-par0)));
    double soften2=1./(1+exp(8.*(x0-par1)));
    double CutLeftCutRight=1./((1+exp(par6*(x0-par7)))*(1+exp(-par8*(x0-par9))));
    double line1=par4*(x0-par0)+par2;
    double line2=(par2-par3)/(par0-par1)*(x0-par0)+par2;
    double line3=par5*(x0-par1)+par3;
    double add45degbumb=1.2*exp(-(x0+7.55)*(x0+7.55)/.35/.35);


    return CutLeftCutRight*(
        (line1)*soften1
        +line2*soften2*(1-soften1)
        +line3*(1-soften2)
        );
} /* end of ESS_2015_Schoenfeldt_thermal_x0 */

/* This is ESS_2015_Schoenfeldt_cold_Y - vertical intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_cold_Y(double Y,double height){
  /* Placeholder - we assume that this distribution is flat for now */
  return 1;
} /* end of ESS_2015_Schoenfeldt_cold_Y */

/* This is ESS_2015_Schoenfeldt_thermal_Y - vertical intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_thermal_Y(double Y,double height){
  /* Placeholder - we assume that this distribution is flat for now */
  return 1;
} /* end of ESS_2015_Schoenfeldt_thermal_Y */

/* This is ESS_2015_Schoenfeldt_cold_Theta120 - vertical intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_cold_Theta120(double Theta120,double height){
  /* Placeholder - we assume that this distribution is flat for now */
  return 1;
} /* end of ESS_2015_Schoenfeldt_cold_Theta120 */

/* This is ESS_2015_Schoenfeldt_thermal_Theta120 - vertical intensity distribution for the 2015 Schoenfeldt cold moderator */
#pragma acc routine seq
double ESS_2015_Schoenfeldt_thermal_Theta120(double beamportangle,int isleft){
  if(!isleft)return cos((beamportangle-30)*DEG2RAD)/cos(30*DEG2RAD);
  return cos((90-beamportangle)*DEG2RAD)/cos(30*DEG2RAD);
/* Placeholder - we assume that this distribution is flat for now */
  return 1;
} /* end of ESS_2015_Schoenfeldt_thermal_Theta120 */


/* This is ESS_2015_Schoenfeldt_cold_timedist time-distribution of the 2014 Schoenfeldt cold moderator */ 
#pragma acc routine seq
double ESS_2015_Schoenfeldt_cold_timedist(double time,double lambda,double height, double pulselength){
        if(time<0)return 0;
        double tau=3.00094e-004*(4.15681e-003*lambda*lambda+2.96212e-001*exp(-1.78408e-001*height)+7.77496e-001)*exp(-6.63537e+001*pow(fmax(1e-13,lambda+.9),-8.64455e+000));
        if(time<pulselength)return ((1-exp(-time/tau)));
        return ((1-exp(-pulselength/tau))*exp(-(time-pulselength)/tau));

} /* end of ESS_2015_Schoenfeldt_cold_timedist */

/* This is ESS_2015_Schoenfeldt_thermal_timedist time-distribution of the 2015 Schoenfeldt cold moderator */    
#pragma acc routine seq
double ESS_2015_Schoenfeldt_thermal_timedist(double time,double lambda,double height, double pulselength){
        if(time<0)return 0;
        double tau=3.00000e-004*(1.23048e-002*lambda*lambda+1.75628e-001*exp(-1.82452e-001*height)+9.27770e-001)*exp(-3.91090e+001*pow(fmax(1e-13,lambda+9.87990e-001),-7.65675e+000));
        if(time<pulselength)return ((1-exp(-time/tau)));
        return ((1-exp(-pulselength/tau))*exp(-(time-pulselength)/tau));
} /* end of ESS_2015_Schoenfeldt_thermal_timedist */

/* end of ESS_butterfly-lib.c */
#ifdef OPENACC
#undef exit
#endif