1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Source_simple
*
* %I
* Written by: Kim Lefmann
* Date: October 30, 1997
* Modified by: KL, October 4, 2001
* Modified by: Emmanuel Farhi, October 30, 2001. Serious bug corrected.
* Origin: Risoe
*
* A circular neutron source with flat energy spectrum and arbitrary flux
*
* %D
* The routine is a circular neutron source, which aims at a square target
* centered at the beam (in order to improve MC-acceptance rate). The angular
* divergence is then given by the dimensions of the target.
* The neutron energy is uniformly distributed between lambda0-dlambda and
* lambda0+dlambda or between E0-dE and E0+dE.
* The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs).
*
* This component replaces Source_flat, Source_flat_lambda,
* Source_flux and Source_flux_lambda.
*
* Example: Source_simple(radius=0.1, dist=2, focus_xw=.1, focus_yh=.1, E0=14, dE=2)
*
* %P
* radius: [m] Radius of circle in (x,y,0) plane where neutrons are generated.
* yheight: [m] Height of rectangle in (x,y,0) plane where neutrons are generated.
* xwidth: [m] Width of rectangle in (x,y,0) plane where neutrons are generated.
* target_index: [1] relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* dist: [m] Distance to target along z axis.
* focus_xw: [m] Width of target
* focus_yh: [m] Height of target
* E0: [meV] Mean energy of neutrons.
* dE: [meV] Energy half spread of neutrons (flat or gaussian sigma).
* lambda0: [AA] Mean wavelength of neutrons.
* dlambda: [AA] Wavelength half spread of neutrons.
* flux: [1/(s*cm**2*st*energy unit)] flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.
* gauss: [1] Gaussian (1) or Flat (0) energy/wavelength distribution
*
* %E
*******************************************************************************/
DEFINE COMPONENT Source_simple
SETTING PARAMETERS (radius=0.1, yheight=0, xwidth=0,
dist=0, focus_xw=.045, focus_yh=.12,
E0=0, dE=0, lambda0=0, dlambda=0,
flux=1, gauss=0, int target_index=+1)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
double pmul;
double srcArea;
int square;
double tx;
double ty;
double tz;
%}
INITIALIZE
%{
square = 0;
/* Determine source area */
if (radius && !yheight && !xwidth ) {
square = 0;
srcArea = PI*radius*radius;
} else if(yheight && xwidth) {
square = 1;
srcArea = xwidth * yheight;
}
if (flux) {
pmul=flux*1e4*srcArea/mcget_ncount();
if (dlambda)
pmul *= 2*dlambda;
else if (dE)
pmul *= 2*dE;
} else {
gauss = 0;
pmul=1.0/(mcget_ncount()*4*PI);
}
if (target_index && !dist)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tx, &ty, &tz);
dist=sqrt(tx*tx+ty*ty+tz*tz);
} else if (dist) {
tx = 0;
ty = 0;
tz = dist;
}
if (srcArea <= 0) {
printf("Source_simple: %s: Source area is <= 0 !\n ERROR - Exiting\n",
NAME_CURRENT_COMP);
exit(0);
}
if (dist <= 0 || focus_xw <= 0 || focus_yh <= 0) {
printf("Source_simple: %s: Target area unmeaningful! (negative dist / focus_xw / focus_yh)\n ERROR - Exiting\n",
NAME_CURRENT_COMP);
exit(0);
}
if ((!lambda0 && !E0 && !dE && !dlambda)) {
printf("Source_simple: %s: You must specify either a wavelength or energy range!\n ERROR - Exiting\n",
NAME_CURRENT_COMP);
exit(0);
}
if ((!lambda0 && !dlambda && (E0 <= 0 || dE < 0 || E0-dE <= 0))
|| (!E0 && !dE && (lambda0 <= 0 || dlambda < 0 || lambda0-dlambda <= 0))) {
printf("Source_simple: %s: Unmeaningful definition of wavelength or energy range!\n ERROR - Exiting\n",
NAME_CURRENT_COMP);
exit(0);
}
%}
TRACE
%{
double chi,E,lambda,v,r, xf, yf, rf, dx, dy, pdir;
t=0;
z=0;
if (square == 1) {
x = xwidth * (rand01() - 0.5);
y = yheight * (rand01() - 0.5);
} else {
chi=2*PI*rand01(); /* Choose point on source */
r=sqrt(rand01())*radius; /* with uniform distribution. */
x=r*cos(chi);
y=r*sin(chi);
}
randvec_target_rect_real(&xf, &yf, &rf, &pdir,
tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2);
dx = xf-x;
dy = yf-y;
rf = sqrt(dx*dx+dy*dy+rf*rf);
p = pdir*pmul;
if(lambda0==0) {
if (!gauss) {
E=E0+dE*randpm1(); /* Choose from uniform distribution */
} else {
E=E0+randnorm()*dE;
}
v=sqrt(E)*SE2V;
} else {
if (!gauss) {
lambda=lambda0+dlambda*randpm1();
} else {
lambda=lambda0+randnorm()*dlambda;
}
v = K2V*(2*PI/lambda);
}
vz=v*dist/rf;
vy=v*dy/rf;
vx=v*dx/rf;
%}
MCDISPLAY
%{
if (square == 1) {
rectangle("xy",0,0,0,xwidth,yheight);
} else {
circle("xy",0,0,0,radius);
}
if (dist) {
dashed_line(0,0,0, -focus_xw/2+tx,-focus_yh/2+ty,tz, 4);
dashed_line(0,0,0, focus_xw/2+tx,-focus_yh/2+ty,tz, 4);
dashed_line(0,0,0, focus_xw/2+tx, focus_yh/2+ty,tz, 4);
dashed_line(0,0,0, -focus_xw/2+tx, focus_yh/2+ty,tz, 4);
}
%}
END
|