File: Single_crystal_process.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (1116 lines) | stat: -rwxr-xr-x 53,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Version: $Revision: 0.1 $
* Origin: University of Copenhagen
*
* Port of the Single_crystal component to the Union components
*
* %D
*
* This Union_process is based on the Single_crystal.comp component originally
*   written by Kristian Nielsen
*
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components like this one
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before the master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components
*
* Algorithm:
* Described elsewhere
*
* %P
* INPUT PARAMETERS:
* packing_factor: [1]  How dense is the material compared to optimal 0-1
* interact_fraction: [1] How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1)
* delta_d_d: [1] Lattice spacing variance, gaussian RMS
* mosaic: [arc minutes] Crystal mosaic (isotropic), gaussian RMS. Puts the crystal in the isotropic mosaic model state, thus disregarding other mosaicity parameters.
* mosaic_a: [arc minutes]                                 Horizontal (rotation around lattice vector a) mosaic (anisotropic), gaussian RMS. Put the crystal in the anisotropic crystal vector state. I.e. model mosaicity through rotation around the crystal lattice vectors. Has precedence over in-plane mosaic model.
* mosaic_b: [arc minutes]                                 Vertical (rotation around lattice vector b) mosaic (anisotropic), gaussian RMS.
* mosaic_c: [arc minutes]                                 Out-of-plane (Rotation around lattice vector c) mosaic (anisotropic), gaussian RMS
* mosaic_AB: [arc_minutes, arc_minutes,1, 1, 1, 1, 1, 1]  In Plane mosaic rotation and plane vectors (anisotropic), mosaic_A, mosaic_B, A_h,A_k,A_l, B_h,B_k,B_l. Puts the crystal in the in-plane mosaic state. Vectors A and B define plane in which  the crystal roation is defined, and mosaic_A, mosaic_B, denotes the resp. mosaicities (gaussian RMS) with respect to the two reflections chosen by A and B (Miller indices).
* recip_cell: [1]                                         Choice of direct/reciprocal (0/1) unit cell definition
* ax: [AA or AA^-1]                                       Coordinates of first (direct/recip) unit cell vector
* ay: [AA or AA^-1]                                       a on y axis
* az: [AA or AA^-1]                                       a on z axis
* bx: [AA or AA^-1]                                       Coordinates of second (direct/recip) unit cell vector
* bz: [AA or AA^-1]                                       b on z axis
* by: [AA or AA^-1]                                       b on y axis
* cx: [AA or AA^-1]                                       Coordinates of third (direct/recip) unit cell vector
* cy: [AA or AA^-1]                                       c on y axis
* cz: [AA or AA^-1]                                       c on z axis
* reflections: [string]                                   File name containing structure factors of reflections. Use empty ("") or NULL for incoherent scattering only
* order: [1]                                              Limit multiple scattering up to given order (0: all, 1: first, 2: second, ...)
* p_transmit: [1]                                         Monte Carlo probability for neutrons to be transmitted without any scattering. Used to improve statistics from weak reflections
* sigma_abs: [barns]                                      Absorption cross-section per unit cell at 2200 m/s
* sigma_inc: [barns]                                      Incoherent scattering cross-section per unit cell Use -1 to unactivate
* aa: [deg]                                               Unit cell angles alpha, beta and gamma. Then uses norms of vectors a,b and c as lattice parameters
* bb: [deg]                                               Beta angle
* cc: [deg]                                               Gamma angle
* barns: [1]                                              Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2. barns=1 for laz and isotropic constant elastic scattering (reflections=NULL), barns=0 for lau type files
* RX: [m]                                                 Radius of lattice curvature along X. flat when 0.
* RY: [m]                                                 Radius of lattice curvature along Y. flat when 0.
* RZ: [m]                                                 Radius of lattice curvature along Z. flat when 0.
* powder: [1]                                             Flag to indicate powder mode, for simulation of Debye-Scherrer cones via random crystallite orientation. A powder texture can be approximated with 0
* PG: [1]                                                 Flag to indicate "Pyrolytic Graphite" mode, only meaningful with choice of Graphite.lau, models PG crystal. A powder texture can be approximated with 0
*
* CALCULATED PARAMETERS:
* Template_storage          // Important to update this output paramter
* effective_my_scattering   // Variable used in initialize
*
* %L
*
* %E
******************************************************************************/

DEFINE COMPONENT Single_crystal_process // Remember to change the name of process here

SETTING PARAMETERS(string reflections=0, delta_d_d=1e-4,
            mosaic = -1, mosaic_a = -1, mosaic_b = -1, mosaic_c = -1, vector mosaic_AB={0,0, 0,0,0, 0,0,0},
            recip_cell=0, barns=0,
            ax = 0, ay = 0, az = 0,
            bx = 0, by = 0, bz = 0,
            cx = 0, cy = 0, cz = 0,
	    aa=0, bb=0, cc=0, order=0, RX=0, RY=0, RZ=0, powder=0, PG=0,
            interact_fraction=-1, packing_factor=1, string init="init")


SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Single_crystal_process component"
#endif

%include "read_table-lib"
%include "interoff-lib"

#ifndef SINGLE_CRYSTAL_PROCESS_DECL
#define SINGLE_CRYSTAL_PROCESS_DECL

#ifndef Mosaic_AB_Undefined
#define Mosaic_AB_Undefined {0,0, 0,0,0, 0,0,0}
#endif

    struct hkl_data_union
    {
      int h,k,l;                  /* Indices for this reflection */
      double F2;                  /* Value of structure factor */
      double tau_x, tau_y, tau_z; /* Coordinates in reciprocal space */
      double tau;                 /* Length of (tau_x, tau_y, tau_z) */
      double u1x, u1y, u1z;       /* First axis of local coordinate system */
      double u2x, u2y, u2z;       /* Second axis of local coordinate system */
      double u3x, u3y, u3z;       /* Third axis of local coordinate system */
      double sig123;              /* The product sig1*sig2*sig3 = volume of spot */
      double m1, m2, m3;          /* Diagonal matrix representation of Gauss */
      double cutoff;              /* Cutoff value for Gaussian tails */
    };
    
  struct tau_data_union
    {
      int index;                  /* Index into reflection table */
      double refl;
      double xsect;
      /* The following vectors are in local koordinates. */
      double rho_x, rho_y, rho_z; /* The vector ki - tau */
      double rho;                 /* Length of rho vector */
      double ox, oy, oz;          /* Origin of Ewald sphere tangent plane */
      double b1x, b1y, b1z;       /* Spanning vectors of Ewald sphere tangent */
      double b2x, b2y, b2z;
      double l11, l12, l22;       /* Cholesky decomposition L of 2D Gauss */
      double y0x, y0y;            /* 2D Gauss center in tangent plane */
    };

  struct hkl_info_struct_union
    {
      struct hkl_data_union *list;      /* Reflection array */
      int count;                  /* Number of reflections */
      struct tau_data_union *tau_list;  /* Reflections close to Ewald Sphere */
      double m_delta_d_d;         /* Delta-d/d FWHM */
      double m_ax,m_ay,m_az;      /* First unit cell axis (direct space, AA) */
      double m_bx,m_by,m_bz;      /* Second unit cell axis */
      double m_cx,m_cy,m_cz;      /* Third unit cell axis */
      double asx,asy,asz;         /* First reciprocal lattice axis (1/AA) */
      double bsx,bsy,bsz;         /* Second reciprocal lattice axis */
      double csx,csy,csz;         /* Third reciprocal lattice axis */
      double m_a, m_b, m_c;       /* length of lattice parameter lengths */
      double m_aa, m_bb, m_cc;    /* lattice angles */
      double sigma_a, sigma_i;    /* abs and inc X sect */
      double rho;                 /* density */
      double at_weight;           /* atomic weight */
      double at_nb;               /* nb of atoms in a cell */
      double V0;                  /* Unit cell volume (AA**3) */
      int    column_order[5];     /* column signification [h,k,l,F,F2] */
      int    recip;               /* Flag to indicate if recip or direct cell axes given */
      int    shape;               /* 0:cylinder, 1:box, 2:sphere 3:any shape*/
      int    flag_warning;        /* number of warnings */
      char   type;                /* type of last event: t=transmit,c=coherent or i=incoherent */
      int    h,k,l;               /* last coherent scattering momentum transfer indices */
      int    tau_count;           /* Number of reflections within cutoff */
      double coh_refl, coh_xsect; /* cross section computed with last tau_list */
      double kix, kiy, kiz;       /* last incoming neutron ki */
      int    nb_reuses, nb_refl, nb_refl_count;
    };

  int SX_list_compare_union (void const *a, void const *b)
  {
     struct hkl_data_union const *pa = a;
     struct hkl_data_union const *pb = b;
     double s = pa->tau - pb->tau;
     
     if (!s) return 0;
     else    return (s < 0 ? -1 : 1);
  } /* PN_list_compare */
  
  /* ------------------------------------------------------------------------ */
  int
  read_hkl_data_union(char *SC_file, struct hkl_info_struct_union *info,
      double SC_mosaic, double SC_mosaic_a, double SC_mosaic_b, double SC_mosaic_c, double *SC_mosaic_AB)
  {
    struct hkl_data_union *list = NULL;
    int size = 0;
    t_Table sTable; /* sample data table structure from SC_file */
    int i=0;
    double tmp_x, tmp_y, tmp_z;
    char **parsing;
    char flag=0;
    double nb_atoms=1;

    if (!SC_file || !strlen(SC_file) || !strcmp(SC_file,"NULL") || !strcmp(SC_file,"0")) {
      info->count = 0;
      flag=1;
    }
    if (!flag) {
      Table_Read(&sTable, SC_file, 1); /* read 1st block data from SC_file into sTable*/
      if (sTable.columns < 4) {
        fprintf(stderr, "Single_crystal: Error: The number of columns in %s should be at least %d for [h,k,l,F2]\n", SC_file, 4);
        return(0);
      }
      if (!sTable.rows) {
        fprintf(stderr, "Single_crystal: Error: The number of rows in %s should be at least %d\n", SC_file, 1);
        return(0);
      } else size = sTable.rows;

      /* parsing of header */
      parsing = Table_ParseHeader(sTable.header,
        "sigma_abs","sigma_a ",
        "sigma_inc","sigma_i ",
        "column_h",
        "column_k",
        "column_l",
        "column_F ",
        "column_F2",
        "Delta_d/d",
        "lattice_a ",
        "lattice_b ",
        "lattice_c ",
        "lattice_aa",
        "lattice_bb",
        "lattice_cc",
        "nb_atoms","multiplicity",
        NULL);

      if (parsing) {
        if (parsing[0] && !info->sigma_a) info->sigma_a=atof(parsing[0]);
        if (parsing[1] && !info->sigma_a) info->sigma_a=atof(parsing[1]);
        if (parsing[2] && !info->sigma_i) info->sigma_i=atof(parsing[2]);
        if (parsing[3] && !info->sigma_i) info->sigma_i=atof(parsing[3]);
        if (parsing[4])                   info->column_order[0]=atoi(parsing[4]);
        if (parsing[5])                   info->column_order[1]=atoi(parsing[5]);
        if (parsing[6])                   info->column_order[2]=atoi(parsing[6]);
        if (parsing[7])                   info->column_order[3]=atoi(parsing[7]);
        if (parsing[8])                   info->column_order[4]=atoi(parsing[8]);
        if (parsing[9] && info->m_delta_d_d <0) info->m_delta_d_d=atof(parsing[9]);
        if (parsing[10] && !info->m_a)    info->m_a =atof(parsing[10]);
        if (parsing[11] && !info->m_b)    info->m_b =atof(parsing[11]);
        if (parsing[12] && !info->m_c)    info->m_c =atof(parsing[12]);
        if (parsing[13] && !info->m_aa)   info->m_aa=atof(parsing[13]);
        if (parsing[14] && !info->m_bb)   info->m_bb=atof(parsing[14]);
        if (parsing[15] && !info->m_cc)   info->m_cc=atof(parsing[15]);
        if (parsing[16])   nb_atoms=atof(parsing[16]);
        if (parsing[17])   nb_atoms=atof(parsing[17]);
        for (i=0; i<=17; i++) if (parsing[i]) free(parsing[i]);
        free(parsing);
      }
    }
    
    if (nb_atoms > 1) { info->sigma_a *= nb_atoms; info->sigma_i *= nb_atoms; }

    /* special cases for the structure definition */
    if (info->m_ax || info->m_ay || info->m_az) info->m_a=0; /* means we specify by hand the vectors */
    if (info->m_bx || info->m_by || info->m_bz) info->m_b=0;
    if (info->m_cx || info->m_cy || info->m_cz) info->m_c=0;

    /* compute the norm from vector a if missing */
    if (info->m_ax || info->m_ay || info->m_az) {
      double as=sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
      if (!info->m_bx && !info->m_by && !info->m_bz) info->m_a=info->m_b=as;
      if (!info->m_cx && !info->m_cy && !info->m_cz) info->m_a=info->m_c=as;
    }
    if (info->m_a && !info->m_b) info->m_b=info->m_a;
    if (info->m_b && !info->m_c) info->m_c=info->m_b;
    
    /* compute the lattive angles if not set from data file. Not used when in vector mode. */
    if (info->m_a && !info->m_aa) info->m_aa=90;
    if (info->m_aa && !info->m_bb) info->m_bb=info->m_aa;
    if (info->m_bb && !info->m_cc) info->m_cc=info->m_bb;
    
    /* parameters consistency checks */
    if (!info->m_ax && !info->m_ay && !info->m_az && !info->m_a) {
      fprintf(stderr,
              "Single_crystal: Error: Wrong a lattice vector definition\n");
      return(0);
    }
    if (!info->m_bx && !info->m_by && !info->m_bz && !info->m_b) {
      fprintf(stderr,
              "Single_crystal: Error: Wrong b lattice vector definition\n");
      return(0);
    }
    if (!info->m_cx && !info->m_cy && !info->m_cz && !info->m_c) {
      fprintf(stderr,
              "Single_crystal: Error: Wrong c lattice vector definition\n");
      return(0);
    }
    if (info->m_aa && info->m_bb && info->m_cc && info->recip) {
      fprintf(stderr,
              "Single_crystal: Error: Selecting reciprocal cell and angles is unmeaningful\n");
      return(0);
    }

    /* when lengths a,b,c + angles are given (instead of vectors a,b,c) */
    if (info->m_aa && info->m_bb && info->m_cc)
    {
      double as,bs,cs;
      if (info->m_a) as = info->m_a;
      else as = sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
      if (info->m_b) bs = info->m_b;
      else bs = sqrt(info->m_bx*info->m_bx+info->m_by*info->m_by+info->m_bz*info->m_bz);
      if (info->m_c) cs = info->m_c;
      else cs =  sqrt(info->m_cx*info->m_cx+info->m_cy*info->m_cy+info->m_cz*info->m_cz);

      info->m_bz = as; info->m_by = 0; info->m_bx = 0;
      info->m_az = bs*cos(info->m_cc*DEG2RAD);
      info->m_ay = bs*sin(info->m_cc*DEG2RAD);
      info->m_ax = 0;
      info->m_cz = cs*cos(info->m_bb*DEG2RAD);
      info->m_cy = cs*(cos(info->m_aa*DEG2RAD)-cos(info->m_cc*DEG2RAD)*cos(info->m_bb*DEG2RAD))
                     /sin(info->m_cc*DEG2RAD);
      info->m_cx = sqrt(cs*cs - info->m_cz*info->m_cz - info->m_cy*info->m_cy);

      printf("Single_crystal: %s structure a=%g b=%g c=%g aa=%g bb=%g cc=%g ",
        (flag ? "INC" : SC_file), as, bs, cs, info->m_aa, info->m_bb, info->m_cc);
    } else {
      if (!info->recip) {
        printf("Single_crystal: %s structure a=[%g,%g,%g] b=[%g,%g,%g] c=[%g,%g,%g] ",
	       (flag ? "INC" : SC_file), info->m_ax ,info->m_ay ,info->m_az,
	       info->m_bx ,info->m_by ,info->m_bz,
	       info->m_cx ,info->m_cy ,info->m_cz);
      } else {
        printf("Single_crystal: %s structure a*=[%g,%g,%g] b*=[%g,%g,%g] c*=[%g,%g,%g] ",
	       (flag ? "INC" : SC_file), info->m_ax ,info->m_ay ,info->m_az,
	       info->m_bx ,info->m_by ,info->m_bz,
	       info->m_cx ,info->m_cy ,info->m_cz);
      }
    }
    /* Compute reciprocal or direct lattice vectors. */
    if (!info->recip) {
      vec_prod(tmp_x, tmp_y, tmp_z,
	       info->m_bx, info->m_by, info->m_bz,
	       info->m_cx, info->m_cy, info->m_cz);
      info->V0 = fabs(scalar_prod(info->m_ax, info->m_ay, info->m_az, tmp_x, tmp_y, tmp_z));
      printf("V0=%g\n", info->V0);
      
      info->asx = 2*PI/info->V0*tmp_x;
      info->asy = 2*PI/info->V0*tmp_y;
      info->asz = 2*PI/info->V0*tmp_z;
      vec_prod(tmp_x, tmp_y, tmp_z, info->m_cx, info->m_cy, info->m_cz, info->m_ax, info->m_ay, info->m_az);
      info->bsx = 2*PI/info->V0*tmp_x;
      info->bsy = 2*PI/info->V0*tmp_y;
      info->bsz = 2*PI/info->V0*tmp_z;
      vec_prod(tmp_x, tmp_y, tmp_z, info->m_ax, info->m_ay, info->m_az, info->m_bx, info->m_by, info->m_bz);
      info->csx = 2*PI/info->V0*tmp_x;
      info->csy = 2*PI/info->V0*tmp_y;
      info->csz = 2*PI/info->V0*tmp_z;
    } else {
      info->asx = info->m_ax;
      info->asy = info->m_ay;
      info->asz = info->m_az;
      info->bsx = info->m_bx;
      info->bsy = info->m_by;
      info->bsz = info->m_bz;
      info->csx = info->m_cx;
      info->csy = info->m_cy;
      info->csz = info->m_cz;
      
      vec_prod(tmp_x, tmp_y, tmp_z,
	       info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI),
	       info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI));
      info->V0 = 1/fabs(scalar_prod(info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI), tmp_x, tmp_y, tmp_z));
      printf("V0=%g\n", info->V0);
      
      /*compute the direct cell parameters, ofr completeness*/ 
      info->m_ax = tmp_x*info->V0;
      info->m_ay = tmp_y*info->V0;
      info->m_az = tmp_z*info->V0;
      vec_prod(tmp_x, tmp_y, tmp_z,info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI),info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI));
      info->m_bx = tmp_x*info->V0;
      info->m_by = tmp_y*info->V0;
      info->m_bz = tmp_z*info->V0;
      vec_prod(tmp_x, tmp_y, tmp_z,info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI),info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI));
      info->m_cx = tmp_x*info->V0;
      info->m_cy = tmp_y*info->V0;
      info->m_cz = tmp_z*info->V0;
    }

    if (flag) return(-1);

    if (!info->column_order[0] || !info->column_order[1] || !info->column_order[2]) {
      fprintf(stderr,
              "Single_crystal: Error: Wrong h,k,l column definition\n");
      return(0);
    }
    if (!info->column_order[3] && !info->column_order[4]) {
      fprintf(stderr,
              "Single_crystal: Error: Wrong F,F2 column definition\n");
      return(0);
    }

    /* allocate hkl_data array */
    list = (struct hkl_data_union*)malloc(size*sizeof(struct hkl_data_union));

    for (i=0; i<size; i++)
    {
      double h=0, k=0, l=0, F2=0;
      double b1[3], b2[3];
      double sig1, sig2, sig3;

      /* get data from table */
      h = Table_Index(sTable, i, info->column_order[0]-1);
      k = Table_Index(sTable, i, info->column_order[1]-1);
      l = Table_Index(sTable, i, info->column_order[2]-1);
      if (info->column_order[3])
      { F2= Table_Index(sTable, i, info->column_order[3]-1); F2 *= F2; }
      else if (info->column_order[4])
        F2= Table_Index(sTable, i, info->column_order[4]-1);

      list[i].h = h;
      list[i].k = k;
      list[i].l = l;
      list[i].F2 = F2;
      
      /* Precompute some values */
      list[i].tau_x = h*info->asx + k*info->bsx + l*info->csx;
      list[i].tau_y = h*info->asy + k*info->bsy + l*info->csy;
      list[i].tau_z = h*info->asz + k*info->bsz + l*info->csz;
      list[i].tau = sqrt(list[i].tau_x*list[i].tau_x +
                         list[i].tau_y*list[i].tau_y +
                         list[i].tau_z*list[i].tau_z);
      list[i].u1x = list[i].tau_x/list[i].tau;
      list[i].u1y = list[i].tau_y/list[i].tau;
      list[i].u1z = list[i].tau_z/list[i].tau;
      sig1 = FWHM2RMS*info->m_delta_d_d*list[i].tau;

      /* Find two arbitrary axes perpendicular to tau and each other. */
      normal_vec(&b1[0], &b1[1], &b1[2],
                 list[i].u1x, list[i].u1y, list[i].u1z);
      vec_prod(b2[0], b2[1], b2[2],
               list[i].u1x, list[i].u1y, list[i].u1z,
               b1[0], b1[1], b1[2]);
               
      /* Find the two mosaic axes perpendicular to tau. */
      if(SC_mosaic > 0) {
        /* Use isotropic mosaic. */
        list[i].u2x = b1[0];
        list[i].u2y = b1[1];
        list[i].u2z = b1[2];
        sig2 = FWHM2RMS*list[i].tau*MIN2RAD*SC_mosaic;
        list[i].u3x = b2[0];
        list[i].u3y = b2[1];
        list[i].u3z = b2[2];
        sig3 = FWHM2RMS*list[i].tau*MIN2RAD*SC_mosaic;
      } else if(SC_mosaic_a > 0 && SC_mosaic_b > 0 && SC_mosaic_c > 0) {
        /* Use anisotropic mosaic. */
        fprintf(stderr,"Single_crystal: Warning: you are using an experimental feature:\n"
          "  anistropic mosaicity. Please examine your data carefully.\n");
        /* compute the jacobian of (tau_v,tau_n) from rotations around the unit cell vectors. */
        struct hkl_data_union *l =&(list[i]);
        double xia_x,xia_y,xia_z,xib_x,xib_y,xib_z,xic_x,xic_y,xic_z;
        /*input parameters are in arc minutes*/
        double sig_fi_a=SC_mosaic_a*MIN2RAD;
        double sig_fi_b=SC_mosaic_b*MIN2RAD;
        double sig_fi_c=SC_mosaic_c*MIN2RAD;
        if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
        if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
        if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));

        l->u2x = b1[0];
        l->u2y = b1[1];
        l->u2z = b1[2];
        l->u3x = b2[0];
        l->u3y = b2[1];
        l->u3z = b2[2];
                                                                          
        xia_x=l->tau_x-(M_2_PI*h/info->m_a)*info->asx;
        xia_y=l->tau_y-(M_2_PI*h/info->m_a)*info->asy;
        xia_z=l->tau_z-(M_2_PI*h/info->m_a)*info->asz;
        xib_x=l->tau_x-(M_2_PI*h/info->m_b)*info->bsx;
        xib_y=l->tau_y-(M_2_PI*h/info->m_b)*info->bsy;
        xib_z=l->tau_z-(M_2_PI*h/info->m_b)*info->bsz;
        xic_x=l->tau_x-(M_2_PI*h/info->m_c)*info->csx;
        xic_y=l->tau_y-(M_2_PI*h/info->m_c)*info->csy;
        xic_z=l->tau_z-(M_2_PI*h/info->m_c)*info->csz;

        double xia=sqrt(xia_x*xia_x + xia_y*xia_y + xia_z*xia_z);
        double xib=sqrt(xib_x*xib_x + xib_y*xib_y + xib_z*xib_z);
        double xic=sqrt(xic_x*xic_x + xic_y*xic_y + xic_z*xic_z);

        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
        double J_n_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
        double J_n_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
        double J_n_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);

        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
        double J_v_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
        double J_v_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
        double J_v_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);

        /*with the jacobian we can compute the sigmas in terms of the orthogonal vectors u2 and u3*/
        sig2=sig_fi_a*fabs(J_v_fia) + sig_fi_b*fabs(J_v_fib) + sig_fi_c*fabs(J_v_fic);
        sig3=sig_fi_a*fabs(J_n_fia) + sig_fi_b*fabs(J_n_fib) + sig_fi_c*fabs(J_n_fic);
      } else if (SC_mosaic_AB[0]!=0 && SC_mosaic_AB[1]!=0){
        if ( (SC_mosaic_AB[2]==0 && SC_mosaic_AB[3]==0 && SC_mosaic_AB[4]==0) || (SC_mosaic_AB[5]==0 && SC_mosaic_AB[6]==0 && SC_mosaic_AB[7]==0) ){
          fprintf(stderr,"Single_crystal: Error: in-plane mosaics are specified but one (or both)\n"
              "  in-plane reciprocal vector is the zero vector\n");
          return(0);
        }
        fprintf(stderr,"Single_crystal: Warning: you are using an experimental feature: \n"
              "  \"in-plane\" anistropic mosaicity. Please examine your data carefully.\n");
 
        /*for given reflection in list - compute linear comb of tau_a and tau_b*/
        /*check for not in plane - f.i. check if (tau_a X tau_b).tau_i)==0*/
        struct hkl_data_union *l =&(list[i]);
        double det,c1,c2,sig_tau_c;
        double em_x,em_y,em_z, tmp_x,tmp_y,tmp_z;
        double tau_a[3],tau_b[3];
        /*convert Miller indices to taus*/
        if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
        if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
        if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));
        tau_a[0]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asx + (SC_mosaic_AB[3]/info->m_b)*info->bsx + (SC_mosaic_AB[4]/info->m_c)*info->csx );
        tau_a[1]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asy + (SC_mosaic_AB[3]/info->m_b)*info->bsy + (SC_mosaic_AB[4]/info->m_c)*info->csy );
        tau_a[2]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asz + (SC_mosaic_AB[3]/info->m_b)*info->bsz + (SC_mosaic_AB[4]/info->m_c)*info->csz );
        tau_b[0]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asx + (SC_mosaic_AB[6]/info->m_b)*info->bsx + (SC_mosaic_AB[7]/info->m_c)*info->csx );
        tau_b[1]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asy + (SC_mosaic_AB[6]/info->m_b)*info->bsy + (SC_mosaic_AB[7]/info->m_c)*info->csy );
        tau_b[2]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asz + (SC_mosaic_AB[6]/info->m_b)*info->bsz + (SC_mosaic_AB[7]/info->m_c)*info->csz );
        
        /*check determinants to see how we should compute the linear combination of a and b (to match c)*/
        if ((det=tau_a[0]*tau_b[1]-tau_a[1]*tau_b[0])!=0){
          c1= (l->tau_x*tau_b[1] - l->tau_y*tau_b[0])/det;
          c2= (tau_a[0]*l->tau_y - tau_a[1]*l->tau_x)/det;
        }else if ((det=tau_a[1]*tau_b[2]-tau_a[2]*tau_b[1])!=0){
          c1= (l->tau_y*tau_b[2] - l->tau_z*tau_b[1])/det;
          c2= (tau_a[1]*l->tau_z - tau_a[2]*l->tau_y)/det;
        }else if ((det=tau_a[0]*tau_b[2]-tau_a[2]*tau_b[0])!=0){
          c1= (l->tau_x*tau_b[2] - l->tau_z*tau_b[0])/det;
          c2= (tau_a[0]*l->tau_z - tau_a[2]*l->tau_x)/det;
        }
        if ((c1==0) && (c2==0)){
          fprintf(stderr,"Single_crystal: Warning: reflection tau[%i]=(%g %g %g) "
          "has no component in defined mosaic plane\n", 
          i, l->tau_x,l->tau_y,l->tau_z);
        }
        /*compute linear combination => sig_tau_i = | c1*sig_tau_a + c2*sig_tau_b |  - also add in the minute to radian scaling factor*/;
        sig_tau_c = MIN2RAD*sqrt(c1*SC_mosaic_AB[0]*c1*SC_mosaic_AB[0] + c2*SC_mosaic_AB[1]*c2*SC_mosaic_AB[1]);
        l->u2x = b1[0]; l->u2y = b1[1]; l->u2z = b1[2];
        l->u3x = b2[0]; l->u3y = b2[1]; l->u3z = b2[2];

        /*so now let's compute the rotation around planenormal tau_a X tau_b*/
        /*g_bar (unit normal of rotation plane) = tau_a X tau_b / norm(tau_a X tau_b)*/
        vec_prod(tmp_x,tmp_y,tmp_z, tau_a[0],tau_a[1],tau_a[2],tau_b[0],tau_b[1],tau_b[2]);
        vec_prod(em_x,em_y,em_z, l->tau_x, l->tau_y, l->tau_z, tmp_x,tmp_y,tmp_z);
        NORM(em_x,em_y,em_z);
        sig2 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u2x,l->u2y,l->u2z));
        sig3 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u3x,l->u3y,l->u3z));
        /*protect against collapsing gaussians. These seem to be sensible values.*/
        if (sig2<1e-5) sig2=1e-5;
        if (sig3<1e-5) sig3=1e-5;
      }
      else {
        fprintf(stderr,
                "Single_crystal: Error: EITHER mosaic OR (mosaic_a, mosaic_b, mosaic_c)\n"
                "  must be given and be >0.\n");
        return(0);
      }
      list[i].sig123 = sig1*sig2*sig3;
      list[i].m1 = 1/(2*sig1*sig1);
      list[i].m2 = 1/(2*sig2*sig2);
      list[i].m3 = 1/(2*sig3*sig3);
      /* Set Gauss cutoff to 5 times the maximal sigma. */
      if(sig1 > sig2)
        if(sig1 > sig3)
          list[i].cutoff = 5*sig1;
        else
          list[i].cutoff = 5*sig3;
      else
        if(sig2 > sig3)
          list[i].cutoff = 5*sig2;
        else
          list[i].cutoff = 5*sig3;
    }
    Table_Free(&sTable);
    
    /* sort the list with increasing tau */
    qsort(list, i, sizeof(struct hkl_data_union),  SX_list_compare_union);
    
    info->list = list;
    info->count = i;
    info->tau_list = malloc(i*sizeof(*info->tau_list));
    if(!info->tau_list)
    {
      fprintf(stderr, "Single_crystal: Error: Out of memory!\n");
      return(0);
    }
    return(info->count);
  } /* read_hkl_data */

  /* ------------------------------------------------------------------------ */
  /* hkl_search
    search the HKL reflections which are on the Ewald sphere
    input:
      L,T,count,V0: constants for all calls
      kix,kiy,kiz: may be different for each call
    this function returns:
      tau_count (return), coh_refl, coh_xsect, T (updated elements in the array up to [j])
   */
  int hkl_search_union(struct hkl_data_union *L, struct tau_data_union *T, int count, double V0,
    double kix, double kiy, double kiz, double tau_max,
    double *coh_refl, double *coh_xsect)
  {
    double rho, rho_x, rho_y, rho_z;
    double diff;
    int    i,j;
    double ox,oy,oz;
    double b1x,b1y,b1z, b2x,b2y,b2z, kx, ky, kz, nx, ny, nz;
    double n11, n22, n12, det_N, inv_n11, inv_n22, inv_n12, l11, l22, l12,  det_L;
    double Bt_D_O_x, Bt_D_O_y, y0x, y0y, alpha;
    
    double ki = sqrt(kix*kix+kiy*kiy+kiz*kiz);

    /* Common factor in coherent cross-section */
    double xsect_factor = pow(2*PI, 5.0/2.0)/(V0*ki*ki);
    
    for(i = j = 0; i < count; i++)
      {
    /* Assuming reflections are sorted, stop search when max tau exceeded. */
        if(L[i].tau > tau_max)
          break;
        /* Check if this reciprocal lattice point is close enough to the
           Ewald sphere to make scattering possible. */
        rho_x = kix - L[i].tau_x;
        rho_y = kiy - L[i].tau_y;
        rho_z = kiz - L[i].tau_z;
        rho = sqrt(rho_x*rho_x + rho_y*rho_y + rho_z*rho_z);
        diff = fabs(rho - ki);

        /* Check if scattering is possible (cutoff of Gaussian tails). */
        if(diff <= L[i].cutoff)
        {
          /* Store reflection. */
          T[j].index = i;
          /* Get ki vector in local coordinates. */
          kx = kix*L[i].u1x + kiy*L[i].u1y + kiz*L[i].u1z;
          ky = kix*L[i].u2x + kiy*L[i].u2y + kiz*L[i].u2z;
          kz = kix*L[i].u3x + kiy*L[i].u3y + kiz*L[i].u3z;
          T[j].rho_x = kx - L[i].tau;
          T[j].rho_y = ky;
          T[j].rho_z = kz;
          T[j].rho = rho;
          /* Compute the tangent plane of the Ewald sphere. */
          nx = T[j].rho_x/T[j].rho;
          ny = T[j].rho_y/T[j].rho;
          nz = T[j].rho_z/T[j].rho;
          ox = (ki - T[j].rho)*nx;
          oy = (ki - T[j].rho)*ny;
          oz = (ki - T[j].rho)*nz;
          T[j].ox = ox;
          T[j].oy = oy;
          T[j].oz = oz;
          /* Compute unit vectors b1 and b2 that span the tangent plane. */
          normal_vec(&b1x, &b1y, &b1z, nx, ny, nz);
          vec_prod(b2x, b2y, b2z, nx, ny, nz, b1x, b1y, b1z);
          T[j].b1x = b1x;
          T[j].b1y = b1y;
          T[j].b1z = b1z;
          T[j].b2x = b2x;
          T[j].b2y = b2y;
          T[j].b2z = b2z;
          /* Compute the 2D projection of the 3D Gauss of the reflection. */
          /* The symmetric 2x2 matrix N describing the 2D gauss. */
          n11 = L[i].m1*b1x*b1x + L[i].m2*b1y*b1y + L[i].m3*b1z*b1z;
          n12 = L[i].m1*b1x*b2x + L[i].m2*b1y*b2y + L[i].m3*b1z*b2z;
          n22 = L[i].m1*b2x*b2x + L[i].m2*b2y*b2y + L[i].m3*b2z*b2z;
          /* The (symmetric) inverse matrix of N. */
          det_N = n11*n22 - n12*n12;
          inv_n11 = n22/det_N;
          inv_n12 = -n12/det_N;
          inv_n22 = n11/det_N;
          /* The Cholesky decomposition of 1/2*inv_n (lower triangular L). */
          l11 = sqrt(inv_n11/2);
          l12 = inv_n12/(2*l11);
          l22 = sqrt(inv_n22/2 - l12*l12);
          T[j].l11 = l11;
          T[j].l12 = l12;
          T[j].l22 = l22;
          det_L = l11*l22;
          /* The product B^T D o. */
          Bt_D_O_x = b1x*L[i].m1*ox + b1y*L[i].m2*oy + b1z*L[i].m3*oz;
          Bt_D_O_y = b2x*L[i].m1*ox + b2y*L[i].m2*oy + b2z*L[i].m3*oz;
          /* Center of 2D Gauss in plane coordinates. */
          y0x = -(Bt_D_O_x*inv_n11 + Bt_D_O_y*inv_n12);
          y0y = -(Bt_D_O_x*inv_n12 + Bt_D_O_y*inv_n22);
          T[j].y0x = y0x;
          T[j].y0y = y0y;
          /* Factor alpha for the distance of the 2D Gauss from the origin. */
          alpha = L[i].m1*ox*ox + L[i].m2*oy*oy + L[i].m3*oz*oz -
                       (y0x*y0x*n11 + y0y*y0y*n22 + 2*y0x*y0y*n12);
          T[j].refl = xsect_factor*det_L*exp(-alpha)/L[i].sig123; /* intensity of that Bragg */
          *coh_refl += T[j].refl;                                  /* total scatterable intensity */
          T[j].xsect = T[j].refl*L[i].F2;
          *coh_xsect += T[j].xsect;
          j++;
        }
        
      } /* end for */
        return (j); // this is 'tau_count', i.e. number of reachable reflections
    } /* end hkl_search */
    
    int hkl_select_union(struct tau_data_union *T, int tau_count, double coh_refl, double *sum, _class_particle *_particle) {
      int j;
      double r = rand0max(coh_refl);
      *sum = 0;
      for(j = 0; j < tau_count; j++)
      {
        *sum += T[j].refl;
        if(*sum > r) break;
      }
      return j;
    }

    /* Functions for "reorientation", powder and PG modes */
    /* Powder, forward */
    void randrotate_union(double *nx, double *ny, double *nz, double a, double b, double c) {
      double x1, y1, z1, x2, y2, z2;
      rotate(x1, y1, z1, *nx,*ny,*nz, a, 1, 0, 0); /* <1> = rot(<n>,a) */
      rotate(x2, y2, z2,  x1, y1, z1, b, 0, 1, 0); /* <2> = rot(<1>,b) */
      rotate(*nx,*ny,*nz, x2, y2, z2, c, 0, 0, 1); /* <n> = rot(<2>,c) */
    }
    /* Powder, back */
    void randderotate_union(double *nx, double *ny, double *nz, double a, double b, double c) {
      double x1, y1, z1, x2, y2, z2;
      rotate(x1, y1, z1, *nx,*ny,*nz, -c, 0,0,1);
      rotate(x2, y2, z2,  x1, y1, z1, -b, 0,1,0);
      rotate(*nx,*ny,*nz, x2, y2, z2, -a, 1,0,0);
    }
    /* PG, forward */
    void PGrotate_union(double *nx, double *ny, double *nz, double a, double csx, double csy, double csz) {
      /* Currently assumes c-axis along 'x', ought to be generalized... */
      double nvx, nvy, nvz;
      rotate(nvx,nvy,nvz, *nx, *ny, *nz, a, csx, csy, csz);
      *nx = nvx; *ny = nvy; *nz = nvz;
    }
    /* PG, back */
    void PGderotate_union(double *nx, double *ny, double *nz, double a, double csx, double csy, double csz) {
      /* Currently assumes c-axis along 'x', ought to be generalized... */
      double nvx, nvy, nvz;
      rotate(nvx,nvy,nvz, *nx, *ny, *nz, -a, csx, csy, csz);
      *nx = nvx; *ny = nvy; *nz = nvz;
    }


#endif /* !SINGLE_CRYSTAL_PROCESS_DECL */

// Very important to add a pointer to this struct in the union-lib.c file
struct Single_crystal_physics_storage_struct{
    // Variables that needs to be transfered between any of the following places:
    // The initialize in this component
    // The function for calculating my
    // The function for calculating scattering
    
    // Avoid duplicates of output parameters and setting parameters in naming
    double PG_setting;     // 0 if PG mode is diabled, 1 if enabled. Values between apporximates texture?
    double powder_setting; // 0 if powder mode is disabled, 1 if enabled. Values between approximates texture?
    double Alpha;          // random angle between 0 and 2*Pi*powder
    double Beta;           // random angle between -Pi/2 and Pi/2
    double Gamma;           // random angle between -Pi and Pi
    
    struct hkl_info_struct_union *hkl_info_storage; // struct containing all necessary info for SC
    double pack; // packing factor
    double barns_setting; // Sets wether barns of fm^2 is used
};

// Function for calculating my, the inverse penetration depth (for only this scattering process).
// The input for this function and its order may not be changed, but the names may be updated.
int Single_crystal_physics_my(double *my, double *k_initial, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {
    // *k_initial is a pointer to a simple vector with 3 doubles, k[0], k[1], k[2] which describes the wavevector
    double kix = k_initial[0],kiy = k_initial[1],kiz = k_initial[2];
    double ki = sqrt(k_initial[0]*k_initial[0]+k_initial[1]*k_initial[1]+k_initial[2]*k_initial[2]);
    
    struct hkl_info_struct_union *hkl_info = data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->hkl_info_storage;
    
    // Taken from Single_crystal and changed hkl_info to a pointer.
    // The split optimization is less useful here than normally
    
    if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->powder_setting) {
      //orientation of crystallite is random
	  data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha = randpm1()*PI*data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->powder_setting;
	  data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Beta = randpm1()*PI/2;
      data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Gamma = randpm1()*PI;
      
	  randrotate_union(&kix, &kiy, &kiz,
        data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha,
        data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Beta,
        data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Gamma);
    }
    if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->PG_setting) {
      // orientation of crystallite is random
      data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha = rand01()*2*PI*data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->PG_setting;
	  PGrotate_union(&kix, &kiy, &kiz,
        data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha,
        hkl_info->csx, hkl_info->csy, hkl_info->csz);
    }
    
    /* in case we use 'SPLIT' then consecutive neutrons can be identical when entering here
         and we may skip the hkl_search call */
    if ( fabs(kix - hkl_info->kix) < 1e-6
        && fabs(kiy - hkl_info->kiy) < 1e-6
        && fabs(kiz - hkl_info->kiz) < 1e-6) {
        hkl_info->nb_reuses++;
      } else {
        /* Max possible tau for this ki with 5*sigma delta-d/d cutoff. */
        double tau_max   = 2*ki/(1 - 5*hkl_info->m_delta_d_d);
        double coh_xsect = 0, coh_refl = 0;
        
        /* call hkl_search */
        hkl_info->tau_count = hkl_search_union(hkl_info->list, hkl_info->tau_list, hkl_info->count, hkl_info->V0, kix, kiy, kiz, tau_max, &coh_refl, &coh_xsect); /* CPU consuming */
          
        // This is problematic as there is no way to know if this is the first scattering in this material or not with the current structure.
        // Need to do one of the following:
        //  remove this optimization
        //  find a way to set event_counter to 0 when a neutron enters a volume with a SC process
        //  pass the number of scatterings in this volume to all my functions
        // temporary solution: all events are considered the first
        int event_counter = 0;
        
        
        /* store ki so that we can check for further SPLIT iterations */
        if (event_counter == 0 ) { /* only for incoming neutron */
          hkl_info->kix = kix;
          hkl_info->kiy = kiy;
          hkl_info->kiz = kiz;
        }
        
        hkl_info->coh_refl  = coh_refl;
        hkl_info->coh_xsect = coh_xsect;
        hkl_info->nb_refl += hkl_info->tau_count;
        hkl_info->nb_refl_count++;
      }

      /* (3). Probabilities of the different possible interactions. */
      //tot_xsect = abs_xsect + inc_xsect + hkl_info.coh_xsect;
      /* Cross-sections are in barns = 10**-28 m**2, and unit cell volumes are
         in AA**3 = 10**-30 m**2. Hence a factor of 100 is used to convert
         scattering lengths to m**-1 */
      double coh_xlen = hkl_info->coh_xsect/hkl_info->V0;
      if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->barns_setting) {
        coh_xlen *= 100;
      }
    
      //printf("Single crystal process returned coh_xlen = %E \n",coh_xlen);
      *my = coh_xlen*data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->pack;
      int iterate;
      //if (hkl_info->tau_count == 0) printf("my: ki=%f, no reflections matched \n",ki);
      for (iterate=0;iterate<hkl_info->tau_count;iterate++)
        //printf("my: ki=%f, hkl_info->coh_xsect = %f, T[%d].refl = %f, coh_xlen = %f \n",ki,hkl_info->coh_xsect,iterate,hkl_info->tau_list[iterate].refl,coh_xlen);
      // Probably need to rotate back from Powder/PG/curvature mode, as another process than this one could be selected. Would just need to send the used rotation parameters to the process to repeat that rotation.
    
    return 1;
};

// Function that provides description of a basic scattering event.
// Do not change the
int Single_crystal_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {

    int i;                        /* Index into structure factor list */
    struct hkl_data_union *L;     /* Structure factor list */
    int j;                        /* Index into reflection list */
    struct tau_data_union *T;     /* List of reflections close to Ewald sphere */
    //double ox, oy, oz;            /* Origin of Ewald sphere tangent plane */
    //double l11, l12, l22;         /* Cholesky decomposition L of 1/2*inv(N) */
    double b1x, b1y, b1z;         /* First vector spanning tangent plane */
    double b2x, b2y, b2z;         /* Second vector spanning tangent plane */
    double z1, z2, y1, y2;        /* Temporaries to choose kf from 2D Gauss */
    double adjust, r, sum;        /* Temporaries */
    double kfx, kfy, kfz;         /* Final wave vector */

    double kix = k_initial[0],kiy = k_initial[1],kiz = k_initial[2];
    double ki = sqrt(k_initial[0]*k_initial[0]+k_initial[1]*k_initial[1]+k_initial[2]*k_initial[2]);
    
    struct hkl_info_struct_union *hkl_info = data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->hkl_info_storage;
    
    L = hkl_info->list;
    T = hkl_info->tau_list;
    
    
    // Taken from Single_crystal.comp
    if(hkl_info->coh_refl <= 0){
          return 0; // Return 0 will use ABSORB in main component (as it is not allowed in a function)
    }
    sum = 0;
    j = hkl_select_union(T, hkl_info->tau_count, hkl_info->coh_refl, &sum, _particle);
    //printf("Selected j = %d with T[%d].refl = %f \n",j,j,T[j].refl);

    if(j >= hkl_info->tau_count)
    {
      #ifndef OPENACC
      if (hkl_info->flag_warning < 100)
        fprintf(stderr, "Single_crystal_process: Error: Illegal tau search "
          "(r=%g, sum=%g, j=%i, tau_count=%i).\n", r, sum, j , hkl_info->tau_count);
      #endif
      hkl_info->flag_warning++;
      j = hkl_info->tau_count - 1;
    }
    i = T[j].index;
    /* (8). Pick scattered wavevector kf from 2D Gauss distribution. */
    z1 = randnorm();
    z2 = randnorm();
    y1 = T[j].l11*z1 + T[j].y0x;
    y2 = T[j].l12*z1 + T[j].l22*z2 + T[j].y0y;
    kfx = T[j].rho_x + T[j].ox + T[j].b1x*y1 + T[j].b2x*y2;
    kfy = T[j].rho_y + T[j].oy + T[j].b1y*y1 + T[j].b2y*y2;
    kfz = T[j].rho_z + T[j].oz + T[j].b1z*y1 + T[j].b2z*y2;
    /* Normalize kf to length of ki, to account for planer
      approximation of the Ewald sphere. */
    adjust = ki/sqrt(kfx*kfx + kfy*kfy + kfz*kfz);
    kfx *= adjust;
    kfy *= adjust;
    kfz *= adjust;
    /* Adjust neutron weight (see manual for explanation). */
    *weight *= T[j].xsect*hkl_info->coh_refl/(hkl_info->coh_xsect*T[j].refl);
    //printf("SCATTERING: hkl_info->coh_refl=%f, hkl_info->coh_xsect = %f, T[%d].refl = %f, hkl_info->tau.count = %d \n",hkl_info->coh_refl,hkl_info->coh_xsect,j,T[j].refl,hkl_info->tau_count);

    // These is the returned final wavevector
    k_final[0] = L[i].u1x*kfx + L[i].u2x*kfy + L[i].u3x*kfz;
    k_final[1] = L[i].u1y*kfx + L[i].u2y*kfy + L[i].u3y*kfz;
    k_final[2] = L[i].u1z*kfx + L[i].u2z*kfy + L[i].u3z*kfz;
    
    if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->powder_setting) {
      // orientation of crystallite is no longer random
	  randderotate_union(&k_final[0], &k_final[1], &k_final[2],
                         data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha,
                         data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Beta,
                         data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Gamma);
    }
    if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->PG_setting) {
      // orientation of crystallite is longer random
	  PGderotate_union(&k_final[0], &k_final[1], &k_final[2], data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha, hkl_info->csx, hkl_info->csy, hkl_info->csz);
    }

    hkl_info->type = 'c';
    hkl_info->h    = L[i].h;
    hkl_info->k    = L[i].k;
    hkl_info->l    = L[i].l;

    return 1;
};

#ifndef PROCESS_DETECTOR
    #define PROCESS_DETECTOR dummy
#endif

#ifndef PROCESS_SINGLE_CRYSTAL_DETECTOR
    #define PROCESS_SINGLE_CRYSTAL_DETECTOR dummy
#endif
%}

DECLARE
%{
// Declare for this component, to do calculations on the input / store in the transported data
struct Single_crystal_physics_storage_struct Single_crystal_storage;

// Variables needed in initialize of this function.
struct hkl_info_struct_union hkl_info_union;

// Needed for transport to the main component, will be the same for all processes
struct global_process_element_struct global_process_element;
struct scattering_process_struct This_process;
%}

INITIALIZE
%{
  // Single crystal initialize
  double as, bs, cs;
  int i=0;

  /* transfer input parameters */
  hkl_info_union.m_delta_d_d = delta_d_d;
  hkl_info_union.m_a  = 0;
  hkl_info_union.m_b  = 0;
  hkl_info_union.m_c  = 0;
  hkl_info_union.m_aa = aa;
  hkl_info_union.m_bb = bb;
  hkl_info_union.m_cc = cc;
  hkl_info_union.m_ax = ax;
  hkl_info_union.m_ay = ay;
  hkl_info_union.m_az = az;
  hkl_info_union.m_bx = bx;
  hkl_info_union.m_by = by;
  hkl_info_union.m_bz = bz;
  hkl_info_union.m_cx = cx;
  hkl_info_union.m_cy = cy;
  hkl_info_union.m_cz = cz;
  //hkl_info_union.sigma_a = sigma_abs;
  //hkl_info_union.sigma_i = sigma_inc;
  hkl_info_union.recip   = recip_cell;

  /* default format h,k,l,F,F2  */
  hkl_info_union.column_order[0]=1;
  hkl_info_union.column_order[1]=2;
  hkl_info_union.column_order[2]=3;
  hkl_info_union.column_order[3]=0;
  hkl_info_union.column_order[4]=7;
  hkl_info_union.kix = hkl_info_union.kiy = hkl_info_union.kiz = 0;
  hkl_info_union.nb_reuses = hkl_info_union.nb_refl = hkl_info_union.nb_refl_count = 0;
  hkl_info_union.tau_count = 0;

  /* ought to be cleaned up as mosaic_AB now is a proper vector/array and not a define */
  double* mosaic_ABin = mosaic_AB;
  /* Read in structure factors, and do some pre-calculations. */
  if (!read_hkl_data_union(reflections, &hkl_info_union, mosaic, mosaic_a, mosaic_b, mosaic_c, mosaic_ABin)) {
    printf("Single_crystal_process: %s: Error: Aborting.\n", NAME_CURRENT_COMP);
    exit(0);
  }
    
  if (hkl_info_union.sigma_a<0) hkl_info_union.sigma_a=0;
  if (hkl_info_union.sigma_i<0) hkl_info_union.sigma_i=0;
  
  if (hkl_info_union.count)
    printf("Single_crystal_process: %s: Read %d reflections from file '%s'\n",
      NAME_CURRENT_COMP, hkl_info_union.count, reflections);
  else printf("Single_crystal_process: %s: Using incoherent elastic scattering only sigma=%g.\n",
      NAME_CURRENT_COMP, hkl_info_union.sigma_i);
  
  /*
  hkl_info.shape=-1; // -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape
  if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
	  if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
      hkl_info.shape=3; 
    }
  }
  else if (xwidth && yheight && zdepth)  hkl_info.shape=1; // box
  else if (radius > 0 && yheight)        hkl_info.shape=0; // cylinder
  else if (radius > 0 && !yheight)       hkl_info.shape=2; // sphere

  if (hkl_info.shape < 0) 
    exit(fprintf(stderr,"Single_crystal: %s: sample has invalid dimensions.\n"
                        "ERROR           Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
  */
  
  printf("Single_crystal: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] reflections=%s\n",
      NAME_CURRENT_COMP, hkl_info_union.V0, hkl_info_union.sigma_a, hkl_info_union.sigma_i,
      reflections && strlen(reflections) ? reflections : "NULL");

  if (powder && PG) 
    exit(fprintf(stderr,"Single_crystal_process: %s: powder and PG modes can not be used together!\n"
	     "ERROR           Please use EITHER powder or PG mode.\n", NAME_CURRENT_COMP));

  if (powder && !(order==1)) {
    fprintf(stderr,"Single_crystal_process: %s: powder mode means implicit choice of no multiple scattering!\n"
	    "WARNING setting order=1\n", NAME_CURRENT_COMP);
    order=1;
  } 
  
  if (PG && !(order==1)) {
    fprintf(stderr,"Single_crystal_process: %s: PG mode means implicit choice of no multiple scattering!\n"
	    "WARNING setting order=1\n", NAME_CURRENT_COMP);
    order=1;
  } 

  // Temporary errors untill these features are either added or removed from input
  

  if (powder)
    exit(fprintf(stderr,"Single_crystal_process: %s: powder mode not supported yet!\n"
	     "ERROR           Please disable powder mode.\n", NAME_CURRENT_COMP));
  

  if (PG)
    exit(fprintf(stderr,"Single_crystal_process: %s: PG mode not supported yet!\n"
	     "ERROR           Please disable PG mode.\n", NAME_CURRENT_COMP));
   
  if (order)
    exit(fprintf(stderr,"Single_crystal_process: %s: Order control not supported yet!\n"
	     "ERROR           Please set order to zero.\n", NAME_CURRENT_COMP));
  
  // Initialize done in the component
  // Added for single crystal
  Single_crystal_storage.PG_setting = PG;
  Single_crystal_storage.powder_setting = powder;
  Single_crystal_storage.barns_setting = barns;
  Single_crystal_storage.pack = packing_factor;
  Single_crystal_storage.hkl_info_storage = &hkl_info_union;

  // Need to specify if this process is isotropic
  //This_process.non_isotropic_rot_index = -1; // Yes (powder)
  This_process.non_isotropic_rot_index =  1;  // No (single crystal)

  // The type of the process must be saved in the global enum process
  This_process.eProcess = Single_crystal;

  // Packing the data into a structure that is transported to the main component
  This_process.data_transfer.pointer_to_a_Single_crystal_physics_storage_struct = &Single_crystal_storage;
  This_process.probability_for_scattering_function = &Single_crystal_physics_my;
  This_process.scattering_function = &Single_crystal_physics_scattering;

  // This will be the same for all process's, and can thus be moved to an include.
  This_process.process_p_interact = interact_fraction;
  sprintf(This_process.name,"%s",NAME_CURRENT_COMP);
  rot_copy(This_process.rotation_matrix,ROT_A_CURRENT_COMP);
  sprintf(global_process_element.name,"%s",NAME_CURRENT_COMP);
  global_process_element.component_index = INDEX_CURRENT_COMP;
  global_process_element.p_scattering_process = &This_process;

if (_getcomp_index(init) < 0) {
fprintf(stderr,"Single_crystal_process:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}


struct pointer_to_global_process_list *global_process_list = COMP_GETPAR3(Union_init, init, global_process_list);
  add_element_to_process_list(global_process_list, global_process_element);
  
 %}

TRACE
%{
    // Trace should be empty, the simulation is done in Union_master
%}

END