1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Version: $Revision: 0.1 $
* Origin: University of Copenhagen
*
* Port of the Single_crystal component to the Union components
*
* %D
*
* This Union_process is based on the Single_crystal.comp component originally
* written by Kristian Nielsen
*
* Part of the Union components, a set of components that work together and thus
* sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components like this one
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
* defined before the master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components
*
* Algorithm:
* Described elsewhere
*
* %P
* INPUT PARAMETERS:
* packing_factor: [1] How dense is the material compared to optimal 0-1
* interact_fraction: [1] How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1)
* delta_d_d: [1] Lattice spacing variance, gaussian RMS
* mosaic: [arc minutes] Crystal mosaic (isotropic), gaussian RMS. Puts the crystal in the isotropic mosaic model state, thus disregarding other mosaicity parameters.
* mosaic_a: [arc minutes] Horizontal (rotation around lattice vector a) mosaic (anisotropic), gaussian RMS. Put the crystal in the anisotropic crystal vector state. I.e. model mosaicity through rotation around the crystal lattice vectors. Has precedence over in-plane mosaic model.
* mosaic_b: [arc minutes] Vertical (rotation around lattice vector b) mosaic (anisotropic), gaussian RMS.
* mosaic_c: [arc minutes] Out-of-plane (Rotation around lattice vector c) mosaic (anisotropic), gaussian RMS
* mosaic_AB: [arc_minutes, arc_minutes,1, 1, 1, 1, 1, 1] In Plane mosaic rotation and plane vectors (anisotropic), mosaic_A, mosaic_B, A_h,A_k,A_l, B_h,B_k,B_l. Puts the crystal in the in-plane mosaic state. Vectors A and B define plane in which the crystal roation is defined, and mosaic_A, mosaic_B, denotes the resp. mosaicities (gaussian RMS) with respect to the two reflections chosen by A and B (Miller indices).
* recip_cell: [1] Choice of direct/reciprocal (0/1) unit cell definition
* ax: [AA or AA^-1] Coordinates of first (direct/recip) unit cell vector
* ay: [AA or AA^-1] a on y axis
* az: [AA or AA^-1] a on z axis
* bx: [AA or AA^-1] Coordinates of second (direct/recip) unit cell vector
* bz: [AA or AA^-1] b on z axis
* by: [AA or AA^-1] b on y axis
* cx: [AA or AA^-1] Coordinates of third (direct/recip) unit cell vector
* cy: [AA or AA^-1] c on y axis
* cz: [AA or AA^-1] c on z axis
* reflections: [string] File name containing structure factors of reflections. Use empty ("") or NULL for incoherent scattering only
* order: [1] Limit multiple scattering up to given order (0: all, 1: first, 2: second, ...)
* p_transmit: [1] Monte Carlo probability for neutrons to be transmitted without any scattering. Used to improve statistics from weak reflections
* sigma_abs: [barns] Absorption cross-section per unit cell at 2200 m/s
* sigma_inc: [barns] Incoherent scattering cross-section per unit cell Use -1 to unactivate
* aa: [deg] Unit cell angles alpha, beta and gamma. Then uses norms of vectors a,b and c as lattice parameters
* bb: [deg] Beta angle
* cc: [deg] Gamma angle
* barns: [1] Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2. barns=1 for laz and isotropic constant elastic scattering (reflections=NULL), barns=0 for lau type files
* RX: [m] Radius of lattice curvature along X. flat when 0.
* RY: [m] Radius of lattice curvature along Y. flat when 0.
* RZ: [m] Radius of lattice curvature along Z. flat when 0.
* powder: [1] Flag to indicate powder mode, for simulation of Debye-Scherrer cones via random crystallite orientation. A powder texture can be approximated with 0
* PG: [1] Flag to indicate "Pyrolytic Graphite" mode, only meaningful with choice of Graphite.lau, models PG crystal. A powder texture can be approximated with 0
*
* CALCULATED PARAMETERS:
* Template_storage // Important to update this output paramter
* effective_my_scattering // Variable used in initialize
*
* %L
*
* %E
******************************************************************************/
DEFINE COMPONENT Single_crystal_process // Remember to change the name of process here
SETTING PARAMETERS(string reflections=0, delta_d_d=1e-4,
mosaic = -1, mosaic_a = -1, mosaic_b = -1, mosaic_c = -1, vector mosaic_AB={0,0, 0,0,0, 0,0,0},
recip_cell=0, barns=0,
ax = 0, ay = 0, az = 0,
bx = 0, by = 0, bz = 0,
cx = 0, cy = 0, cz = 0,
aa=0, bb=0, cc=0, order=0, RX=0, RY=0, RZ=0, powder=0, PG=0,
interact_fraction=-1, packing_factor=1, string init="init")
SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Single_crystal_process component"
#endif
%include "read_table-lib"
%include "interoff-lib"
#ifndef SINGLE_CRYSTAL_PROCESS_DECL
#define SINGLE_CRYSTAL_PROCESS_DECL
#ifndef Mosaic_AB_Undefined
#define Mosaic_AB_Undefined {0,0, 0,0,0, 0,0,0}
#endif
struct hkl_data_union
{
int h,k,l; /* Indices for this reflection */
double F2; /* Value of structure factor */
double tau_x, tau_y, tau_z; /* Coordinates in reciprocal space */
double tau; /* Length of (tau_x, tau_y, tau_z) */
double u1x, u1y, u1z; /* First axis of local coordinate system */
double u2x, u2y, u2z; /* Second axis of local coordinate system */
double u3x, u3y, u3z; /* Third axis of local coordinate system */
double sig123; /* The product sig1*sig2*sig3 = volume of spot */
double m1, m2, m3; /* Diagonal matrix representation of Gauss */
double cutoff; /* Cutoff value for Gaussian tails */
};
struct tau_data_union
{
int index; /* Index into reflection table */
double refl;
double xsect;
/* The following vectors are in local koordinates. */
double rho_x, rho_y, rho_z; /* The vector ki - tau */
double rho; /* Length of rho vector */
double ox, oy, oz; /* Origin of Ewald sphere tangent plane */
double b1x, b1y, b1z; /* Spanning vectors of Ewald sphere tangent */
double b2x, b2y, b2z;
double l11, l12, l22; /* Cholesky decomposition L of 2D Gauss */
double y0x, y0y; /* 2D Gauss center in tangent plane */
};
struct hkl_info_struct_union
{
struct hkl_data_union *list; /* Reflection array */
int count; /* Number of reflections */
struct tau_data_union *tau_list; /* Reflections close to Ewald Sphere */
double m_delta_d_d; /* Delta-d/d FWHM */
double m_ax,m_ay,m_az; /* First unit cell axis (direct space, AA) */
double m_bx,m_by,m_bz; /* Second unit cell axis */
double m_cx,m_cy,m_cz; /* Third unit cell axis */
double asx,asy,asz; /* First reciprocal lattice axis (1/AA) */
double bsx,bsy,bsz; /* Second reciprocal lattice axis */
double csx,csy,csz; /* Third reciprocal lattice axis */
double m_a, m_b, m_c; /* length of lattice parameter lengths */
double m_aa, m_bb, m_cc; /* lattice angles */
double sigma_a, sigma_i; /* abs and inc X sect */
double rho; /* density */
double at_weight; /* atomic weight */
double at_nb; /* nb of atoms in a cell */
double V0; /* Unit cell volume (AA**3) */
int column_order[5]; /* column signification [h,k,l,F,F2] */
int recip; /* Flag to indicate if recip or direct cell axes given */
int shape; /* 0:cylinder, 1:box, 2:sphere 3:any shape*/
int flag_warning; /* number of warnings */
char type; /* type of last event: t=transmit,c=coherent or i=incoherent */
int h,k,l; /* last coherent scattering momentum transfer indices */
int tau_count; /* Number of reflections within cutoff */
double coh_refl, coh_xsect; /* cross section computed with last tau_list */
double kix, kiy, kiz; /* last incoming neutron ki */
int nb_reuses, nb_refl, nb_refl_count;
};
int SX_list_compare_union (void const *a, void const *b)
{
struct hkl_data_union const *pa = a;
struct hkl_data_union const *pb = b;
double s = pa->tau - pb->tau;
if (!s) return 0;
else return (s < 0 ? -1 : 1);
} /* PN_list_compare */
/* ------------------------------------------------------------------------ */
int
read_hkl_data_union(char *SC_file, struct hkl_info_struct_union *info,
double SC_mosaic, double SC_mosaic_a, double SC_mosaic_b, double SC_mosaic_c, double *SC_mosaic_AB)
{
struct hkl_data_union *list = NULL;
int size = 0;
t_Table sTable; /* sample data table structure from SC_file */
int i=0;
double tmp_x, tmp_y, tmp_z;
char **parsing;
char flag=0;
double nb_atoms=1;
if (!SC_file || !strlen(SC_file) || !strcmp(SC_file,"NULL") || !strcmp(SC_file,"0")) {
info->count = 0;
flag=1;
}
if (!flag) {
Table_Read(&sTable, SC_file, 1); /* read 1st block data from SC_file into sTable*/
if (sTable.columns < 4) {
fprintf(stderr, "Single_crystal: Error: The number of columns in %s should be at least %d for [h,k,l,F2]\n", SC_file, 4);
return(0);
}
if (!sTable.rows) {
fprintf(stderr, "Single_crystal: Error: The number of rows in %s should be at least %d\n", SC_file, 1);
return(0);
} else size = sTable.rows;
/* parsing of header */
parsing = Table_ParseHeader(sTable.header,
"sigma_abs","sigma_a ",
"sigma_inc","sigma_i ",
"column_h",
"column_k",
"column_l",
"column_F ",
"column_F2",
"Delta_d/d",
"lattice_a ",
"lattice_b ",
"lattice_c ",
"lattice_aa",
"lattice_bb",
"lattice_cc",
"nb_atoms","multiplicity",
NULL);
if (parsing) {
if (parsing[0] && !info->sigma_a) info->sigma_a=atof(parsing[0]);
if (parsing[1] && !info->sigma_a) info->sigma_a=atof(parsing[1]);
if (parsing[2] && !info->sigma_i) info->sigma_i=atof(parsing[2]);
if (parsing[3] && !info->sigma_i) info->sigma_i=atof(parsing[3]);
if (parsing[4]) info->column_order[0]=atoi(parsing[4]);
if (parsing[5]) info->column_order[1]=atoi(parsing[5]);
if (parsing[6]) info->column_order[2]=atoi(parsing[6]);
if (parsing[7]) info->column_order[3]=atoi(parsing[7]);
if (parsing[8]) info->column_order[4]=atoi(parsing[8]);
if (parsing[9] && info->m_delta_d_d <0) info->m_delta_d_d=atof(parsing[9]);
if (parsing[10] && !info->m_a) info->m_a =atof(parsing[10]);
if (parsing[11] && !info->m_b) info->m_b =atof(parsing[11]);
if (parsing[12] && !info->m_c) info->m_c =atof(parsing[12]);
if (parsing[13] && !info->m_aa) info->m_aa=atof(parsing[13]);
if (parsing[14] && !info->m_bb) info->m_bb=atof(parsing[14]);
if (parsing[15] && !info->m_cc) info->m_cc=atof(parsing[15]);
if (parsing[16]) nb_atoms=atof(parsing[16]);
if (parsing[17]) nb_atoms=atof(parsing[17]);
for (i=0; i<=17; i++) if (parsing[i]) free(parsing[i]);
free(parsing);
}
}
if (nb_atoms > 1) { info->sigma_a *= nb_atoms; info->sigma_i *= nb_atoms; }
/* special cases for the structure definition */
if (info->m_ax || info->m_ay || info->m_az) info->m_a=0; /* means we specify by hand the vectors */
if (info->m_bx || info->m_by || info->m_bz) info->m_b=0;
if (info->m_cx || info->m_cy || info->m_cz) info->m_c=0;
/* compute the norm from vector a if missing */
if (info->m_ax || info->m_ay || info->m_az) {
double as=sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
if (!info->m_bx && !info->m_by && !info->m_bz) info->m_a=info->m_b=as;
if (!info->m_cx && !info->m_cy && !info->m_cz) info->m_a=info->m_c=as;
}
if (info->m_a && !info->m_b) info->m_b=info->m_a;
if (info->m_b && !info->m_c) info->m_c=info->m_b;
/* compute the lattive angles if not set from data file. Not used when in vector mode. */
if (info->m_a && !info->m_aa) info->m_aa=90;
if (info->m_aa && !info->m_bb) info->m_bb=info->m_aa;
if (info->m_bb && !info->m_cc) info->m_cc=info->m_bb;
/* parameters consistency checks */
if (!info->m_ax && !info->m_ay && !info->m_az && !info->m_a) {
fprintf(stderr,
"Single_crystal: Error: Wrong a lattice vector definition\n");
return(0);
}
if (!info->m_bx && !info->m_by && !info->m_bz && !info->m_b) {
fprintf(stderr,
"Single_crystal: Error: Wrong b lattice vector definition\n");
return(0);
}
if (!info->m_cx && !info->m_cy && !info->m_cz && !info->m_c) {
fprintf(stderr,
"Single_crystal: Error: Wrong c lattice vector definition\n");
return(0);
}
if (info->m_aa && info->m_bb && info->m_cc && info->recip) {
fprintf(stderr,
"Single_crystal: Error: Selecting reciprocal cell and angles is unmeaningful\n");
return(0);
}
/* when lengths a,b,c + angles are given (instead of vectors a,b,c) */
if (info->m_aa && info->m_bb && info->m_cc)
{
double as,bs,cs;
if (info->m_a) as = info->m_a;
else as = sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
if (info->m_b) bs = info->m_b;
else bs = sqrt(info->m_bx*info->m_bx+info->m_by*info->m_by+info->m_bz*info->m_bz);
if (info->m_c) cs = info->m_c;
else cs = sqrt(info->m_cx*info->m_cx+info->m_cy*info->m_cy+info->m_cz*info->m_cz);
info->m_bz = as; info->m_by = 0; info->m_bx = 0;
info->m_az = bs*cos(info->m_cc*DEG2RAD);
info->m_ay = bs*sin(info->m_cc*DEG2RAD);
info->m_ax = 0;
info->m_cz = cs*cos(info->m_bb*DEG2RAD);
info->m_cy = cs*(cos(info->m_aa*DEG2RAD)-cos(info->m_cc*DEG2RAD)*cos(info->m_bb*DEG2RAD))
/sin(info->m_cc*DEG2RAD);
info->m_cx = sqrt(cs*cs - info->m_cz*info->m_cz - info->m_cy*info->m_cy);
printf("Single_crystal: %s structure a=%g b=%g c=%g aa=%g bb=%g cc=%g ",
(flag ? "INC" : SC_file), as, bs, cs, info->m_aa, info->m_bb, info->m_cc);
} else {
if (!info->recip) {
printf("Single_crystal: %s structure a=[%g,%g,%g] b=[%g,%g,%g] c=[%g,%g,%g] ",
(flag ? "INC" : SC_file), info->m_ax ,info->m_ay ,info->m_az,
info->m_bx ,info->m_by ,info->m_bz,
info->m_cx ,info->m_cy ,info->m_cz);
} else {
printf("Single_crystal: %s structure a*=[%g,%g,%g] b*=[%g,%g,%g] c*=[%g,%g,%g] ",
(flag ? "INC" : SC_file), info->m_ax ,info->m_ay ,info->m_az,
info->m_bx ,info->m_by ,info->m_bz,
info->m_cx ,info->m_cy ,info->m_cz);
}
}
/* Compute reciprocal or direct lattice vectors. */
if (!info->recip) {
vec_prod(tmp_x, tmp_y, tmp_z,
info->m_bx, info->m_by, info->m_bz,
info->m_cx, info->m_cy, info->m_cz);
info->V0 = fabs(scalar_prod(info->m_ax, info->m_ay, info->m_az, tmp_x, tmp_y, tmp_z));
printf("V0=%g\n", info->V0);
info->asx = 2*PI/info->V0*tmp_x;
info->asy = 2*PI/info->V0*tmp_y;
info->asz = 2*PI/info->V0*tmp_z;
vec_prod(tmp_x, tmp_y, tmp_z, info->m_cx, info->m_cy, info->m_cz, info->m_ax, info->m_ay, info->m_az);
info->bsx = 2*PI/info->V0*tmp_x;
info->bsy = 2*PI/info->V0*tmp_y;
info->bsz = 2*PI/info->V0*tmp_z;
vec_prod(tmp_x, tmp_y, tmp_z, info->m_ax, info->m_ay, info->m_az, info->m_bx, info->m_by, info->m_bz);
info->csx = 2*PI/info->V0*tmp_x;
info->csy = 2*PI/info->V0*tmp_y;
info->csz = 2*PI/info->V0*tmp_z;
} else {
info->asx = info->m_ax;
info->asy = info->m_ay;
info->asz = info->m_az;
info->bsx = info->m_bx;
info->bsy = info->m_by;
info->bsz = info->m_bz;
info->csx = info->m_cx;
info->csy = info->m_cy;
info->csz = info->m_cz;
vec_prod(tmp_x, tmp_y, tmp_z,
info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI),
info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI));
info->V0 = 1/fabs(scalar_prod(info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI), tmp_x, tmp_y, tmp_z));
printf("V0=%g\n", info->V0);
/*compute the direct cell parameters, ofr completeness*/
info->m_ax = tmp_x*info->V0;
info->m_ay = tmp_y*info->V0;
info->m_az = tmp_z*info->V0;
vec_prod(tmp_x, tmp_y, tmp_z,info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI),info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI));
info->m_bx = tmp_x*info->V0;
info->m_by = tmp_y*info->V0;
info->m_bz = tmp_z*info->V0;
vec_prod(tmp_x, tmp_y, tmp_z,info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI),info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI));
info->m_cx = tmp_x*info->V0;
info->m_cy = tmp_y*info->V0;
info->m_cz = tmp_z*info->V0;
}
if (flag) return(-1);
if (!info->column_order[0] || !info->column_order[1] || !info->column_order[2]) {
fprintf(stderr,
"Single_crystal: Error: Wrong h,k,l column definition\n");
return(0);
}
if (!info->column_order[3] && !info->column_order[4]) {
fprintf(stderr,
"Single_crystal: Error: Wrong F,F2 column definition\n");
return(0);
}
/* allocate hkl_data array */
list = (struct hkl_data_union*)malloc(size*sizeof(struct hkl_data_union));
for (i=0; i<size; i++)
{
double h=0, k=0, l=0, F2=0;
double b1[3], b2[3];
double sig1, sig2, sig3;
/* get data from table */
h = Table_Index(sTable, i, info->column_order[0]-1);
k = Table_Index(sTable, i, info->column_order[1]-1);
l = Table_Index(sTable, i, info->column_order[2]-1);
if (info->column_order[3])
{ F2= Table_Index(sTable, i, info->column_order[3]-1); F2 *= F2; }
else if (info->column_order[4])
F2= Table_Index(sTable, i, info->column_order[4]-1);
list[i].h = h;
list[i].k = k;
list[i].l = l;
list[i].F2 = F2;
/* Precompute some values */
list[i].tau_x = h*info->asx + k*info->bsx + l*info->csx;
list[i].tau_y = h*info->asy + k*info->bsy + l*info->csy;
list[i].tau_z = h*info->asz + k*info->bsz + l*info->csz;
list[i].tau = sqrt(list[i].tau_x*list[i].tau_x +
list[i].tau_y*list[i].tau_y +
list[i].tau_z*list[i].tau_z);
list[i].u1x = list[i].tau_x/list[i].tau;
list[i].u1y = list[i].tau_y/list[i].tau;
list[i].u1z = list[i].tau_z/list[i].tau;
sig1 = FWHM2RMS*info->m_delta_d_d*list[i].tau;
/* Find two arbitrary axes perpendicular to tau and each other. */
normal_vec(&b1[0], &b1[1], &b1[2],
list[i].u1x, list[i].u1y, list[i].u1z);
vec_prod(b2[0], b2[1], b2[2],
list[i].u1x, list[i].u1y, list[i].u1z,
b1[0], b1[1], b1[2]);
/* Find the two mosaic axes perpendicular to tau. */
if(SC_mosaic > 0) {
/* Use isotropic mosaic. */
list[i].u2x = b1[0];
list[i].u2y = b1[1];
list[i].u2z = b1[2];
sig2 = FWHM2RMS*list[i].tau*MIN2RAD*SC_mosaic;
list[i].u3x = b2[0];
list[i].u3y = b2[1];
list[i].u3z = b2[2];
sig3 = FWHM2RMS*list[i].tau*MIN2RAD*SC_mosaic;
} else if(SC_mosaic_a > 0 && SC_mosaic_b > 0 && SC_mosaic_c > 0) {
/* Use anisotropic mosaic. */
fprintf(stderr,"Single_crystal: Warning: you are using an experimental feature:\n"
" anistropic mosaicity. Please examine your data carefully.\n");
/* compute the jacobian of (tau_v,tau_n) from rotations around the unit cell vectors. */
struct hkl_data_union *l =&(list[i]);
double xia_x,xia_y,xia_z,xib_x,xib_y,xib_z,xic_x,xic_y,xic_z;
/*input parameters are in arc minutes*/
double sig_fi_a=SC_mosaic_a*MIN2RAD;
double sig_fi_b=SC_mosaic_b*MIN2RAD;
double sig_fi_c=SC_mosaic_c*MIN2RAD;
if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));
l->u2x = b1[0];
l->u2y = b1[1];
l->u2z = b1[2];
l->u3x = b2[0];
l->u3y = b2[1];
l->u3z = b2[2];
xia_x=l->tau_x-(M_2_PI*h/info->m_a)*info->asx;
xia_y=l->tau_y-(M_2_PI*h/info->m_a)*info->asy;
xia_z=l->tau_z-(M_2_PI*h/info->m_a)*info->asz;
xib_x=l->tau_x-(M_2_PI*h/info->m_b)*info->bsx;
xib_y=l->tau_y-(M_2_PI*h/info->m_b)*info->bsy;
xib_z=l->tau_z-(M_2_PI*h/info->m_b)*info->bsz;
xic_x=l->tau_x-(M_2_PI*h/info->m_c)*info->csx;
xic_y=l->tau_y-(M_2_PI*h/info->m_c)*info->csy;
xic_z=l->tau_z-(M_2_PI*h/info->m_c)*info->csz;
double xia=sqrt(xia_x*xia_x + xia_y*xia_y + xia_z*xia_z);
double xib=sqrt(xib_x*xib_x + xib_y*xib_y + xib_z*xib_z);
double xic=sqrt(xic_x*xic_x + xic_y*xic_y + xic_z*xic_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
double J_n_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
double J_n_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
double J_n_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
double J_v_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
double J_v_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
double J_v_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);
/*with the jacobian we can compute the sigmas in terms of the orthogonal vectors u2 and u3*/
sig2=sig_fi_a*fabs(J_v_fia) + sig_fi_b*fabs(J_v_fib) + sig_fi_c*fabs(J_v_fic);
sig3=sig_fi_a*fabs(J_n_fia) + sig_fi_b*fabs(J_n_fib) + sig_fi_c*fabs(J_n_fic);
} else if (SC_mosaic_AB[0]!=0 && SC_mosaic_AB[1]!=0){
if ( (SC_mosaic_AB[2]==0 && SC_mosaic_AB[3]==0 && SC_mosaic_AB[4]==0) || (SC_mosaic_AB[5]==0 && SC_mosaic_AB[6]==0 && SC_mosaic_AB[7]==0) ){
fprintf(stderr,"Single_crystal: Error: in-plane mosaics are specified but one (or both)\n"
" in-plane reciprocal vector is the zero vector\n");
return(0);
}
fprintf(stderr,"Single_crystal: Warning: you are using an experimental feature: \n"
" \"in-plane\" anistropic mosaicity. Please examine your data carefully.\n");
/*for given reflection in list - compute linear comb of tau_a and tau_b*/
/*check for not in plane - f.i. check if (tau_a X tau_b).tau_i)==0*/
struct hkl_data_union *l =&(list[i]);
double det,c1,c2,sig_tau_c;
double em_x,em_y,em_z, tmp_x,tmp_y,tmp_z;
double tau_a[3],tau_b[3];
/*convert Miller indices to taus*/
if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));
tau_a[0]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asx + (SC_mosaic_AB[3]/info->m_b)*info->bsx + (SC_mosaic_AB[4]/info->m_c)*info->csx );
tau_a[1]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asy + (SC_mosaic_AB[3]/info->m_b)*info->bsy + (SC_mosaic_AB[4]/info->m_c)*info->csy );
tau_a[2]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asz + (SC_mosaic_AB[3]/info->m_b)*info->bsz + (SC_mosaic_AB[4]/info->m_c)*info->csz );
tau_b[0]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asx + (SC_mosaic_AB[6]/info->m_b)*info->bsx + (SC_mosaic_AB[7]/info->m_c)*info->csx );
tau_b[1]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asy + (SC_mosaic_AB[6]/info->m_b)*info->bsy + (SC_mosaic_AB[7]/info->m_c)*info->csy );
tau_b[2]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asz + (SC_mosaic_AB[6]/info->m_b)*info->bsz + (SC_mosaic_AB[7]/info->m_c)*info->csz );
/*check determinants to see how we should compute the linear combination of a and b (to match c)*/
if ((det=tau_a[0]*tau_b[1]-tau_a[1]*tau_b[0])!=0){
c1= (l->tau_x*tau_b[1] - l->tau_y*tau_b[0])/det;
c2= (tau_a[0]*l->tau_y - tau_a[1]*l->tau_x)/det;
}else if ((det=tau_a[1]*tau_b[2]-tau_a[2]*tau_b[1])!=0){
c1= (l->tau_y*tau_b[2] - l->tau_z*tau_b[1])/det;
c2= (tau_a[1]*l->tau_z - tau_a[2]*l->tau_y)/det;
}else if ((det=tau_a[0]*tau_b[2]-tau_a[2]*tau_b[0])!=0){
c1= (l->tau_x*tau_b[2] - l->tau_z*tau_b[0])/det;
c2= (tau_a[0]*l->tau_z - tau_a[2]*l->tau_x)/det;
}
if ((c1==0) && (c2==0)){
fprintf(stderr,"Single_crystal: Warning: reflection tau[%i]=(%g %g %g) "
"has no component in defined mosaic plane\n",
i, l->tau_x,l->tau_y,l->tau_z);
}
/*compute linear combination => sig_tau_i = | c1*sig_tau_a + c2*sig_tau_b | - also add in the minute to radian scaling factor*/;
sig_tau_c = MIN2RAD*sqrt(c1*SC_mosaic_AB[0]*c1*SC_mosaic_AB[0] + c2*SC_mosaic_AB[1]*c2*SC_mosaic_AB[1]);
l->u2x = b1[0]; l->u2y = b1[1]; l->u2z = b1[2];
l->u3x = b2[0]; l->u3y = b2[1]; l->u3z = b2[2];
/*so now let's compute the rotation around planenormal tau_a X tau_b*/
/*g_bar (unit normal of rotation plane) = tau_a X tau_b / norm(tau_a X tau_b)*/
vec_prod(tmp_x,tmp_y,tmp_z, tau_a[0],tau_a[1],tau_a[2],tau_b[0],tau_b[1],tau_b[2]);
vec_prod(em_x,em_y,em_z, l->tau_x, l->tau_y, l->tau_z, tmp_x,tmp_y,tmp_z);
NORM(em_x,em_y,em_z);
sig2 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u2x,l->u2y,l->u2z));
sig3 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u3x,l->u3y,l->u3z));
/*protect against collapsing gaussians. These seem to be sensible values.*/
if (sig2<1e-5) sig2=1e-5;
if (sig3<1e-5) sig3=1e-5;
}
else {
fprintf(stderr,
"Single_crystal: Error: EITHER mosaic OR (mosaic_a, mosaic_b, mosaic_c)\n"
" must be given and be >0.\n");
return(0);
}
list[i].sig123 = sig1*sig2*sig3;
list[i].m1 = 1/(2*sig1*sig1);
list[i].m2 = 1/(2*sig2*sig2);
list[i].m3 = 1/(2*sig3*sig3);
/* Set Gauss cutoff to 5 times the maximal sigma. */
if(sig1 > sig2)
if(sig1 > sig3)
list[i].cutoff = 5*sig1;
else
list[i].cutoff = 5*sig3;
else
if(sig2 > sig3)
list[i].cutoff = 5*sig2;
else
list[i].cutoff = 5*sig3;
}
Table_Free(&sTable);
/* sort the list with increasing tau */
qsort(list, i, sizeof(struct hkl_data_union), SX_list_compare_union);
info->list = list;
info->count = i;
info->tau_list = malloc(i*sizeof(*info->tau_list));
if(!info->tau_list)
{
fprintf(stderr, "Single_crystal: Error: Out of memory!\n");
return(0);
}
return(info->count);
} /* read_hkl_data */
/* ------------------------------------------------------------------------ */
/* hkl_search
search the HKL reflections which are on the Ewald sphere
input:
L,T,count,V0: constants for all calls
kix,kiy,kiz: may be different for each call
this function returns:
tau_count (return), coh_refl, coh_xsect, T (updated elements in the array up to [j])
*/
int hkl_search_union(struct hkl_data_union *L, struct tau_data_union *T, int count, double V0,
double kix, double kiy, double kiz, double tau_max,
double *coh_refl, double *coh_xsect)
{
double rho, rho_x, rho_y, rho_z;
double diff;
int i,j;
double ox,oy,oz;
double b1x,b1y,b1z, b2x,b2y,b2z, kx, ky, kz, nx, ny, nz;
double n11, n22, n12, det_N, inv_n11, inv_n22, inv_n12, l11, l22, l12, det_L;
double Bt_D_O_x, Bt_D_O_y, y0x, y0y, alpha;
double ki = sqrt(kix*kix+kiy*kiy+kiz*kiz);
/* Common factor in coherent cross-section */
double xsect_factor = pow(2*PI, 5.0/2.0)/(V0*ki*ki);
for(i = j = 0; i < count; i++)
{
/* Assuming reflections are sorted, stop search when max tau exceeded. */
if(L[i].tau > tau_max)
break;
/* Check if this reciprocal lattice point is close enough to the
Ewald sphere to make scattering possible. */
rho_x = kix - L[i].tau_x;
rho_y = kiy - L[i].tau_y;
rho_z = kiz - L[i].tau_z;
rho = sqrt(rho_x*rho_x + rho_y*rho_y + rho_z*rho_z);
diff = fabs(rho - ki);
/* Check if scattering is possible (cutoff of Gaussian tails). */
if(diff <= L[i].cutoff)
{
/* Store reflection. */
T[j].index = i;
/* Get ki vector in local coordinates. */
kx = kix*L[i].u1x + kiy*L[i].u1y + kiz*L[i].u1z;
ky = kix*L[i].u2x + kiy*L[i].u2y + kiz*L[i].u2z;
kz = kix*L[i].u3x + kiy*L[i].u3y + kiz*L[i].u3z;
T[j].rho_x = kx - L[i].tau;
T[j].rho_y = ky;
T[j].rho_z = kz;
T[j].rho = rho;
/* Compute the tangent plane of the Ewald sphere. */
nx = T[j].rho_x/T[j].rho;
ny = T[j].rho_y/T[j].rho;
nz = T[j].rho_z/T[j].rho;
ox = (ki - T[j].rho)*nx;
oy = (ki - T[j].rho)*ny;
oz = (ki - T[j].rho)*nz;
T[j].ox = ox;
T[j].oy = oy;
T[j].oz = oz;
/* Compute unit vectors b1 and b2 that span the tangent plane. */
normal_vec(&b1x, &b1y, &b1z, nx, ny, nz);
vec_prod(b2x, b2y, b2z, nx, ny, nz, b1x, b1y, b1z);
T[j].b1x = b1x;
T[j].b1y = b1y;
T[j].b1z = b1z;
T[j].b2x = b2x;
T[j].b2y = b2y;
T[j].b2z = b2z;
/* Compute the 2D projection of the 3D Gauss of the reflection. */
/* The symmetric 2x2 matrix N describing the 2D gauss. */
n11 = L[i].m1*b1x*b1x + L[i].m2*b1y*b1y + L[i].m3*b1z*b1z;
n12 = L[i].m1*b1x*b2x + L[i].m2*b1y*b2y + L[i].m3*b1z*b2z;
n22 = L[i].m1*b2x*b2x + L[i].m2*b2y*b2y + L[i].m3*b2z*b2z;
/* The (symmetric) inverse matrix of N. */
det_N = n11*n22 - n12*n12;
inv_n11 = n22/det_N;
inv_n12 = -n12/det_N;
inv_n22 = n11/det_N;
/* The Cholesky decomposition of 1/2*inv_n (lower triangular L). */
l11 = sqrt(inv_n11/2);
l12 = inv_n12/(2*l11);
l22 = sqrt(inv_n22/2 - l12*l12);
T[j].l11 = l11;
T[j].l12 = l12;
T[j].l22 = l22;
det_L = l11*l22;
/* The product B^T D o. */
Bt_D_O_x = b1x*L[i].m1*ox + b1y*L[i].m2*oy + b1z*L[i].m3*oz;
Bt_D_O_y = b2x*L[i].m1*ox + b2y*L[i].m2*oy + b2z*L[i].m3*oz;
/* Center of 2D Gauss in plane coordinates. */
y0x = -(Bt_D_O_x*inv_n11 + Bt_D_O_y*inv_n12);
y0y = -(Bt_D_O_x*inv_n12 + Bt_D_O_y*inv_n22);
T[j].y0x = y0x;
T[j].y0y = y0y;
/* Factor alpha for the distance of the 2D Gauss from the origin. */
alpha = L[i].m1*ox*ox + L[i].m2*oy*oy + L[i].m3*oz*oz -
(y0x*y0x*n11 + y0y*y0y*n22 + 2*y0x*y0y*n12);
T[j].refl = xsect_factor*det_L*exp(-alpha)/L[i].sig123; /* intensity of that Bragg */
*coh_refl += T[j].refl; /* total scatterable intensity */
T[j].xsect = T[j].refl*L[i].F2;
*coh_xsect += T[j].xsect;
j++;
}
} /* end for */
return (j); // this is 'tau_count', i.e. number of reachable reflections
} /* end hkl_search */
int hkl_select_union(struct tau_data_union *T, int tau_count, double coh_refl, double *sum, _class_particle *_particle) {
int j;
double r = rand0max(coh_refl);
*sum = 0;
for(j = 0; j < tau_count; j++)
{
*sum += T[j].refl;
if(*sum > r) break;
}
return j;
}
/* Functions for "reorientation", powder and PG modes */
/* Powder, forward */
void randrotate_union(double *nx, double *ny, double *nz, double a, double b, double c) {
double x1, y1, z1, x2, y2, z2;
rotate(x1, y1, z1, *nx,*ny,*nz, a, 1, 0, 0); /* <1> = rot(<n>,a) */
rotate(x2, y2, z2, x1, y1, z1, b, 0, 1, 0); /* <2> = rot(<1>,b) */
rotate(*nx,*ny,*nz, x2, y2, z2, c, 0, 0, 1); /* <n> = rot(<2>,c) */
}
/* Powder, back */
void randderotate_union(double *nx, double *ny, double *nz, double a, double b, double c) {
double x1, y1, z1, x2, y2, z2;
rotate(x1, y1, z1, *nx,*ny,*nz, -c, 0,0,1);
rotate(x2, y2, z2, x1, y1, z1, -b, 0,1,0);
rotate(*nx,*ny,*nz, x2, y2, z2, -a, 1,0,0);
}
/* PG, forward */
void PGrotate_union(double *nx, double *ny, double *nz, double a, double csx, double csy, double csz) {
/* Currently assumes c-axis along 'x', ought to be generalized... */
double nvx, nvy, nvz;
rotate(nvx,nvy,nvz, *nx, *ny, *nz, a, csx, csy, csz);
*nx = nvx; *ny = nvy; *nz = nvz;
}
/* PG, back */
void PGderotate_union(double *nx, double *ny, double *nz, double a, double csx, double csy, double csz) {
/* Currently assumes c-axis along 'x', ought to be generalized... */
double nvx, nvy, nvz;
rotate(nvx,nvy,nvz, *nx, *ny, *nz, -a, csx, csy, csz);
*nx = nvx; *ny = nvy; *nz = nvz;
}
#endif /* !SINGLE_CRYSTAL_PROCESS_DECL */
// Very important to add a pointer to this struct in the union-lib.c file
struct Single_crystal_physics_storage_struct{
// Variables that needs to be transfered between any of the following places:
// The initialize in this component
// The function for calculating my
// The function for calculating scattering
// Avoid duplicates of output parameters and setting parameters in naming
double PG_setting; // 0 if PG mode is diabled, 1 if enabled. Values between apporximates texture?
double powder_setting; // 0 if powder mode is disabled, 1 if enabled. Values between approximates texture?
double Alpha; // random angle between 0 and 2*Pi*powder
double Beta; // random angle between -Pi/2 and Pi/2
double Gamma; // random angle between -Pi and Pi
struct hkl_info_struct_union *hkl_info_storage; // struct containing all necessary info for SC
double pack; // packing factor
double barns_setting; // Sets wether barns of fm^2 is used
};
// Function for calculating my, the inverse penetration depth (for only this scattering process).
// The input for this function and its order may not be changed, but the names may be updated.
int Single_crystal_physics_my(double *my, double *k_initial, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {
// *k_initial is a pointer to a simple vector with 3 doubles, k[0], k[1], k[2] which describes the wavevector
double kix = k_initial[0],kiy = k_initial[1],kiz = k_initial[2];
double ki = sqrt(k_initial[0]*k_initial[0]+k_initial[1]*k_initial[1]+k_initial[2]*k_initial[2]);
struct hkl_info_struct_union *hkl_info = data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->hkl_info_storage;
// Taken from Single_crystal and changed hkl_info to a pointer.
// The split optimization is less useful here than normally
if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->powder_setting) {
//orientation of crystallite is random
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha = randpm1()*PI*data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->powder_setting;
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Beta = randpm1()*PI/2;
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Gamma = randpm1()*PI;
randrotate_union(&kix, &kiy, &kiz,
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha,
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Beta,
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Gamma);
}
if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->PG_setting) {
// orientation of crystallite is random
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha = rand01()*2*PI*data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->PG_setting;
PGrotate_union(&kix, &kiy, &kiz,
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha,
hkl_info->csx, hkl_info->csy, hkl_info->csz);
}
/* in case we use 'SPLIT' then consecutive neutrons can be identical when entering here
and we may skip the hkl_search call */
if ( fabs(kix - hkl_info->kix) < 1e-6
&& fabs(kiy - hkl_info->kiy) < 1e-6
&& fabs(kiz - hkl_info->kiz) < 1e-6) {
hkl_info->nb_reuses++;
} else {
/* Max possible tau for this ki with 5*sigma delta-d/d cutoff. */
double tau_max = 2*ki/(1 - 5*hkl_info->m_delta_d_d);
double coh_xsect = 0, coh_refl = 0;
/* call hkl_search */
hkl_info->tau_count = hkl_search_union(hkl_info->list, hkl_info->tau_list, hkl_info->count, hkl_info->V0, kix, kiy, kiz, tau_max, &coh_refl, &coh_xsect); /* CPU consuming */
// This is problematic as there is no way to know if this is the first scattering in this material or not with the current structure.
// Need to do one of the following:
// remove this optimization
// find a way to set event_counter to 0 when a neutron enters a volume with a SC process
// pass the number of scatterings in this volume to all my functions
// temporary solution: all events are considered the first
int event_counter = 0;
/* store ki so that we can check for further SPLIT iterations */
if (event_counter == 0 ) { /* only for incoming neutron */
hkl_info->kix = kix;
hkl_info->kiy = kiy;
hkl_info->kiz = kiz;
}
hkl_info->coh_refl = coh_refl;
hkl_info->coh_xsect = coh_xsect;
hkl_info->nb_refl += hkl_info->tau_count;
hkl_info->nb_refl_count++;
}
/* (3). Probabilities of the different possible interactions. */
//tot_xsect = abs_xsect + inc_xsect + hkl_info.coh_xsect;
/* Cross-sections are in barns = 10**-28 m**2, and unit cell volumes are
in AA**3 = 10**-30 m**2. Hence a factor of 100 is used to convert
scattering lengths to m**-1 */
double coh_xlen = hkl_info->coh_xsect/hkl_info->V0;
if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->barns_setting) {
coh_xlen *= 100;
}
//printf("Single crystal process returned coh_xlen = %E \n",coh_xlen);
*my = coh_xlen*data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->pack;
int iterate;
//if (hkl_info->tau_count == 0) printf("my: ki=%f, no reflections matched \n",ki);
for (iterate=0;iterate<hkl_info->tau_count;iterate++)
//printf("my: ki=%f, hkl_info->coh_xsect = %f, T[%d].refl = %f, coh_xlen = %f \n",ki,hkl_info->coh_xsect,iterate,hkl_info->tau_list[iterate].refl,coh_xlen);
// Probably need to rotate back from Powder/PG/curvature mode, as another process than this one could be selected. Would just need to send the used rotation parameters to the process to repeat that rotation.
return 1;
};
// Function that provides description of a basic scattering event.
// Do not change the
int Single_crystal_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {
int i; /* Index into structure factor list */
struct hkl_data_union *L; /* Structure factor list */
int j; /* Index into reflection list */
struct tau_data_union *T; /* List of reflections close to Ewald sphere */
//double ox, oy, oz; /* Origin of Ewald sphere tangent plane */
//double l11, l12, l22; /* Cholesky decomposition L of 1/2*inv(N) */
double b1x, b1y, b1z; /* First vector spanning tangent plane */
double b2x, b2y, b2z; /* Second vector spanning tangent plane */
double z1, z2, y1, y2; /* Temporaries to choose kf from 2D Gauss */
double adjust, r, sum; /* Temporaries */
double kfx, kfy, kfz; /* Final wave vector */
double kix = k_initial[0],kiy = k_initial[1],kiz = k_initial[2];
double ki = sqrt(k_initial[0]*k_initial[0]+k_initial[1]*k_initial[1]+k_initial[2]*k_initial[2]);
struct hkl_info_struct_union *hkl_info = data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->hkl_info_storage;
L = hkl_info->list;
T = hkl_info->tau_list;
// Taken from Single_crystal.comp
if(hkl_info->coh_refl <= 0){
return 0; // Return 0 will use ABSORB in main component (as it is not allowed in a function)
}
sum = 0;
j = hkl_select_union(T, hkl_info->tau_count, hkl_info->coh_refl, &sum, _particle);
//printf("Selected j = %d with T[%d].refl = %f \n",j,j,T[j].refl);
if(j >= hkl_info->tau_count)
{
#ifndef OPENACC
if (hkl_info->flag_warning < 100)
fprintf(stderr, "Single_crystal_process: Error: Illegal tau search "
"(r=%g, sum=%g, j=%i, tau_count=%i).\n", r, sum, j , hkl_info->tau_count);
#endif
hkl_info->flag_warning++;
j = hkl_info->tau_count - 1;
}
i = T[j].index;
/* (8). Pick scattered wavevector kf from 2D Gauss distribution. */
z1 = randnorm();
z2 = randnorm();
y1 = T[j].l11*z1 + T[j].y0x;
y2 = T[j].l12*z1 + T[j].l22*z2 + T[j].y0y;
kfx = T[j].rho_x + T[j].ox + T[j].b1x*y1 + T[j].b2x*y2;
kfy = T[j].rho_y + T[j].oy + T[j].b1y*y1 + T[j].b2y*y2;
kfz = T[j].rho_z + T[j].oz + T[j].b1z*y1 + T[j].b2z*y2;
/* Normalize kf to length of ki, to account for planer
approximation of the Ewald sphere. */
adjust = ki/sqrt(kfx*kfx + kfy*kfy + kfz*kfz);
kfx *= adjust;
kfy *= adjust;
kfz *= adjust;
/* Adjust neutron weight (see manual for explanation). */
*weight *= T[j].xsect*hkl_info->coh_refl/(hkl_info->coh_xsect*T[j].refl);
//printf("SCATTERING: hkl_info->coh_refl=%f, hkl_info->coh_xsect = %f, T[%d].refl = %f, hkl_info->tau.count = %d \n",hkl_info->coh_refl,hkl_info->coh_xsect,j,T[j].refl,hkl_info->tau_count);
// These is the returned final wavevector
k_final[0] = L[i].u1x*kfx + L[i].u2x*kfy + L[i].u3x*kfz;
k_final[1] = L[i].u1y*kfx + L[i].u2y*kfy + L[i].u3y*kfz;
k_final[2] = L[i].u1z*kfx + L[i].u2z*kfy + L[i].u3z*kfz;
if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->powder_setting) {
// orientation of crystallite is no longer random
randderotate_union(&k_final[0], &k_final[1], &k_final[2],
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha,
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Beta,
data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Gamma);
}
if (data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->PG_setting) {
// orientation of crystallite is longer random
PGderotate_union(&k_final[0], &k_final[1], &k_final[2], data_transfer.pointer_to_a_Single_crystal_physics_storage_struct->Alpha, hkl_info->csx, hkl_info->csy, hkl_info->csz);
}
hkl_info->type = 'c';
hkl_info->h = L[i].h;
hkl_info->k = L[i].k;
hkl_info->l = L[i].l;
return 1;
};
#ifndef PROCESS_DETECTOR
#define PROCESS_DETECTOR dummy
#endif
#ifndef PROCESS_SINGLE_CRYSTAL_DETECTOR
#define PROCESS_SINGLE_CRYSTAL_DETECTOR dummy
#endif
%}
DECLARE
%{
// Declare for this component, to do calculations on the input / store in the transported data
struct Single_crystal_physics_storage_struct Single_crystal_storage;
// Variables needed in initialize of this function.
struct hkl_info_struct_union hkl_info_union;
// Needed for transport to the main component, will be the same for all processes
struct global_process_element_struct global_process_element;
struct scattering_process_struct This_process;
%}
INITIALIZE
%{
// Single crystal initialize
double as, bs, cs;
int i=0;
/* transfer input parameters */
hkl_info_union.m_delta_d_d = delta_d_d;
hkl_info_union.m_a = 0;
hkl_info_union.m_b = 0;
hkl_info_union.m_c = 0;
hkl_info_union.m_aa = aa;
hkl_info_union.m_bb = bb;
hkl_info_union.m_cc = cc;
hkl_info_union.m_ax = ax;
hkl_info_union.m_ay = ay;
hkl_info_union.m_az = az;
hkl_info_union.m_bx = bx;
hkl_info_union.m_by = by;
hkl_info_union.m_bz = bz;
hkl_info_union.m_cx = cx;
hkl_info_union.m_cy = cy;
hkl_info_union.m_cz = cz;
//hkl_info_union.sigma_a = sigma_abs;
//hkl_info_union.sigma_i = sigma_inc;
hkl_info_union.recip = recip_cell;
/* default format h,k,l,F,F2 */
hkl_info_union.column_order[0]=1;
hkl_info_union.column_order[1]=2;
hkl_info_union.column_order[2]=3;
hkl_info_union.column_order[3]=0;
hkl_info_union.column_order[4]=7;
hkl_info_union.kix = hkl_info_union.kiy = hkl_info_union.kiz = 0;
hkl_info_union.nb_reuses = hkl_info_union.nb_refl = hkl_info_union.nb_refl_count = 0;
hkl_info_union.tau_count = 0;
/* ought to be cleaned up as mosaic_AB now is a proper vector/array and not a define */
double* mosaic_ABin = mosaic_AB;
/* Read in structure factors, and do some pre-calculations. */
if (!read_hkl_data_union(reflections, &hkl_info_union, mosaic, mosaic_a, mosaic_b, mosaic_c, mosaic_ABin)) {
printf("Single_crystal_process: %s: Error: Aborting.\n", NAME_CURRENT_COMP);
exit(0);
}
if (hkl_info_union.sigma_a<0) hkl_info_union.sigma_a=0;
if (hkl_info_union.sigma_i<0) hkl_info_union.sigma_i=0;
if (hkl_info_union.count)
printf("Single_crystal_process: %s: Read %d reflections from file '%s'\n",
NAME_CURRENT_COMP, hkl_info_union.count, reflections);
else printf("Single_crystal_process: %s: Using incoherent elastic scattering only sigma=%g.\n",
NAME_CURRENT_COMP, hkl_info_union.sigma_i);
/*
hkl_info.shape=-1; // -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
hkl_info.shape=3;
}
}
else if (xwidth && yheight && zdepth) hkl_info.shape=1; // box
else if (radius > 0 && yheight) hkl_info.shape=0; // cylinder
else if (radius > 0 && !yheight) hkl_info.shape=2; // sphere
if (hkl_info.shape < 0)
exit(fprintf(stderr,"Single_crystal: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
*/
printf("Single_crystal: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] reflections=%s\n",
NAME_CURRENT_COMP, hkl_info_union.V0, hkl_info_union.sigma_a, hkl_info_union.sigma_i,
reflections && strlen(reflections) ? reflections : "NULL");
if (powder && PG)
exit(fprintf(stderr,"Single_crystal_process: %s: powder and PG modes can not be used together!\n"
"ERROR Please use EITHER powder or PG mode.\n", NAME_CURRENT_COMP));
if (powder && !(order==1)) {
fprintf(stderr,"Single_crystal_process: %s: powder mode means implicit choice of no multiple scattering!\n"
"WARNING setting order=1\n", NAME_CURRENT_COMP);
order=1;
}
if (PG && !(order==1)) {
fprintf(stderr,"Single_crystal_process: %s: PG mode means implicit choice of no multiple scattering!\n"
"WARNING setting order=1\n", NAME_CURRENT_COMP);
order=1;
}
// Temporary errors untill these features are either added or removed from input
if (powder)
exit(fprintf(stderr,"Single_crystal_process: %s: powder mode not supported yet!\n"
"ERROR Please disable powder mode.\n", NAME_CURRENT_COMP));
if (PG)
exit(fprintf(stderr,"Single_crystal_process: %s: PG mode not supported yet!\n"
"ERROR Please disable PG mode.\n", NAME_CURRENT_COMP));
if (order)
exit(fprintf(stderr,"Single_crystal_process: %s: Order control not supported yet!\n"
"ERROR Please set order to zero.\n", NAME_CURRENT_COMP));
// Initialize done in the component
// Added for single crystal
Single_crystal_storage.PG_setting = PG;
Single_crystal_storage.powder_setting = powder;
Single_crystal_storage.barns_setting = barns;
Single_crystal_storage.pack = packing_factor;
Single_crystal_storage.hkl_info_storage = &hkl_info_union;
// Need to specify if this process is isotropic
//This_process.non_isotropic_rot_index = -1; // Yes (powder)
This_process.non_isotropic_rot_index = 1; // No (single crystal)
// The type of the process must be saved in the global enum process
This_process.eProcess = Single_crystal;
// Packing the data into a structure that is transported to the main component
This_process.data_transfer.pointer_to_a_Single_crystal_physics_storage_struct = &Single_crystal_storage;
This_process.probability_for_scattering_function = &Single_crystal_physics_my;
This_process.scattering_function = &Single_crystal_physics_scattering;
// This will be the same for all process's, and can thus be moved to an include.
This_process.process_p_interact = interact_fraction;
sprintf(This_process.name,"%s",NAME_CURRENT_COMP);
rot_copy(This_process.rotation_matrix,ROT_A_CURRENT_COMP);
sprintf(global_process_element.name,"%s",NAME_CURRENT_COMP);
global_process_element.component_index = INDEX_CURRENT_COMP;
global_process_element.p_scattering_process = &This_process;
if (_getcomp_index(init) < 0) {
fprintf(stderr,"Single_crystal_process:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}
struct pointer_to_global_process_list *global_process_list = COMP_GETPAR3(Union_init, init, global_process_list);
add_element_to_process_list(global_process_list, global_process_element);
%}
TRACE
%{
// Trace should be empty, the simulation is done in Union_master
%}
END
|