1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Ring_h
*
* %Identification
*
* Written by: Erik B Knudsen and Desiree D. M. Ferreira
* Date: Feb. 2016
* Version: 1.0
* Release: McXtrace 1.2
* Origin: DTU Physics, DTU Space
* Modified by: Søren Jeppesen
* Date: Feb. 2017
* Version: 1.1
* Release: McXtrace 1.2
* Origin: DTU Physics, DTU Space
*
* Stack of conical shells as part of a Wolter optic. Hyperbolic version.
*
* %Description
* A stack of conical shells is simulated. Hyperbolic version.
* To intersect the Wolter I plates we take advatage of the azimuthal symmetry and only consider the radial component
* of the photon's wavevector.
*
* Example: Ring_h( pore_th=0, ring_nr=3, Z0=12, yheight=0.83e-3, mirror_reflec="mirror_coating_unity.txt", R_d=0, size_file="ref_design_breaks.txt")
*
* %Parameters
* Input parameters:
* radius_m: [m] Ring radius of the upper (reflecting) plate of the pore at the intersection with the parabolic section.
* radius_h: [m] Ring radius of the upper (reflecting) plate of the pore at the edge closest to the focal point.
* yheight: [m] Height of the pore. (Thus the inner radius is radius_{m,h}-yheight
* chamferwidth: [m] Width of side walls.
* gap: [m] gap between intersection with parabolic section and actual plate.
* Z0: [m] distance between intersection plane and the focal spot( essentially the focal length).
* mirror_reflec: [ ] Data file containing reflectivities of the reflector surface (TOP).
* side_reflec: [ ] Data file containing reflectivities of the side walls (LEFT and RIGHT).
* bottom_reflec: [ ] Data file containing reflectivities of the bottom surface (BOTTOM).
* R_d: [ ] Default reflectivity value to use if no reflectivity file is given. Useful f.i. is one surface is reflecting and the others absorbing.
* waviness: [rad] Waviness of the pore reflecting surface. The slope error is assumed to be uniformly distributed in the interval [-waviness:waviness].
* longw: [ ] If non-zero, waviness is 1D and along the pore axis.
* %End
*******************************************************************************/
DEFINE COMPONENT Ring_h
SETTING PARAMETERS (int ring_nr, pore_th, Z0, yheight, chamferwidth=0, gap=0, zdepth=0, string mirror_reflec="", string bottom_reflec="", string size_file="", R_d=1, waviness=0, longw=0)
SHARE
%{
%include "read_table-lib"
#ifndef MCSPO_INTERSECT_HYPERBOLOID
#define MCSPO_INTERSECT_HYPERBOLOID 1
int intersect_hyperboloid(double *l0, double x, double y, double z, double kx, double ky, double kz, double Z0, double radius, double *nx, double *ny, double *nz){
double alpha,thetap,thetah,P,d,e,C0;
alpha=0.25*atan(radius/Z0);
thetap=alpha;
thetah=alpha*3;
P=Z0*tan(4*alpha)*tan(thetap);
d=Z0*tan(4*alpha)*tan(4*alpha-thetah);
e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
C0=4*e*e*P*d/(e*e-1);
double kxn=kx,kyn=ky,kzn=kz;
NORM(kxn,kyn,kzn);
double A,B,C,Z;
Z=Z0-z;
/* A=kxn*kxn + kyn*kyn + kzn*kzn - e^2 kzn*kzn = 1 - e^2 kzn^2*/
A=1-e*e*kzn*kzn;
B=2*kxn*x + 2*kyn*y+ 2*e*e*(d+Z)*kzn - 2*kzn*(Z);
C=x*x + y*y + Z*Z - e*e*(d+Z)*(d+Z);
int status;
double l1;
if ( (status=solve_2nd_order(l0,&l1,A,B,C))==0 ){
/*note that if l1->NULL only the smallest positive solution is returned*/
/*fprintf(stderr,"Ring_h: No solution %g %g %g %g %g %g\n ",x,y,z, kx,ky,kz);*/
return status;
}
/*compute normal vector*/
x+=kxn* (*l0);
y+=kyn* (*l0);
z+=kzn* (*l0);
Z=Z0-z;
double delta_y=-0.5 * pow( e*e*(d+Z)*(d+Z) - Z*Z,-0.5) * ( 2*e*e*(d+Z) - 2*Z);
double rh=sqrt(e*e * (d+Z0-z)*(d+Z0-z) -(Z0-z)*(Z0-z));
/* The tilt of the normal vector perpendicular to the optical axis
* depends only on the displacement in x*/
*nx=x/rh;
*ny=y/rh;
*nz = 0 - delta_y + 0;
/* the minus sign since a negative slope in rh results in the normal tilting "forward" which
corresponds to a positive sign in z*/
NORM(*nx,*ny,*nz);
return status;
}
#endif
int hit_h = 0;
%}
DECLARE
%{
double nExit[3];
double wExit[3];
double nEntry[3];
double wEntry[3];
double nTop[3];
double nBottom[3];
double radius_m;
double radius_h;
double e_min[2];
double e_step[2];
double e_max[2];
double theta_min[2];
double theta_step[2];
double theta_max[2];
double zexit;
double *zexit_vec;
t_Table reflec_top_table;
t_Table reflec_bottom_table;
t_Table size_table;
%}
INITIALIZE
%{
/*read data from files into tables using read_table-lib*/
char *filenames[2]={mirror_reflec,bottom_reflec};
t_Table *ref_tables[2]={&reflec_top_table,&reflec_bottom_table};
int i;
/*read data from files into tables using read_table-lib*/
for (i=0;i<2;i++){
char *reflec=filenames[i];
t_Table *tp=ref_tables[i];
if (reflec && strlen(reflec)) {
char **header_parsed;
/* read 1st block data from file into tp */
if (Table_Read(tp, reflec, 1) <= 0)
{
exit(fprintf(stderr,"Error(%s): can not read file %s\n",NAME_CURRENT_COMP, reflec));
}
header_parsed = Table_ParseHeader(tp->header,
"e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=",NULL);
if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
header_parsed[3] && header_parsed[4] && header_parsed[5])
{
e_min[i]=strtod(header_parsed[0],NULL);
e_max[i]=strtod(header_parsed[1],NULL);
e_step[i]=strtod(header_parsed[2],NULL);
theta_min[i]=strtod(header_parsed[3],NULL);
theta_max[i]=strtod(header_parsed[4],NULL);
theta_step[i]=strtod(header_parsed[5],NULL);
} else {
exit(fprintf(stderr,"Error (%s): wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, reflec));
}
if (!((int)(e_max[i]-e_min[i]) == (int)((tp->rows-1)*e_step[i])))
{
exit(fprintf(stderr,"Error (%s): e_step does not match e_min and e_max in file %s\n",NAME_CURRENT_COMP, reflec));
}
if (!((int)(theta_max[i]-theta_min[i]) == (int)((tp->columns-1)*theta_step[i])))
{
exit(fprintf(stderr,"Error (%s): theta_step does not match theta_min and theta_max in file %s\n",NAME_CURRENT_COMP, reflec));
}
}else{
/*mark the table as unread by setting "rows" to -1
This will trigger the default reflectivity.*/
tp->rows=-1;
}
}
/* Read table with the individual shell size parameters */
if(size_file){
if (Table_Read(&(size_table), size_file, ring_nr) <=0)
exit(fprintf(stderr, "Error (%s): Could not read %s. Aborting.\n",NAME_CURRENT_COMP, size_file));
}
zexit_vec=calloc(size_table.rows,sizeof(double));
double alpha,thetap,thetah,P,d,e,C0;
/*There are in general 68 reflecting planes*/
for (i=0;i<size_table.rows;i++){
radius_m = Table_Index(size_table,i,3);
radius_h = Table_Index(size_table,i,2);
/* compute some pore parameters for the parabolic or hyperbolic equations*/
/* the z coordinate of the entry plane*/
/*assuming the parameter xi==1*/
alpha=0.25*atan(radius_m/Z0);
thetap=alpha;
thetah=alpha*3;
P=Z0*tan(4*alpha)*tan(thetap);
d=Z0*tan(4*alpha)*tan(4*alpha-thetah);
e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
C0=4*e*e*P*d/(e*e-1);
/*now solve to get the z-coordinate of the exit plane, assuming radius_m to be bigger.
from v. speybroeck and Chase: rh^2 = e^2 (d+Z)^2 - Z^2, where z_{mcxtrace}=Z0-Z, since we assume z=0 at the entry of the pore*/
double A,B,C;
A=e*e-1;
B=2*d*e*e;
C=e*e*d*d -radius_h*radius_h;
int status=solve_2nd_order(&zexit,NULL,A,B,C);
if(zexit<0 || !status){
fprintf(stderr,"couldn't figure out the length of the hyperbolic_pore\n");
exit(-1);
}
/*go to mcxtrace coordinate*/
zexit=Z0-zexit;
zexit_vec[i] = zexit;
}
nEntry[0]=0;
nEntry[1]=0;
nEntry[2]=1;
wEntry[0]=wEntry[1]=wEntry[2]=0;
nExit[0]=0;
nExit[1]=0;
nExit[2]=1;
wExit[0]=wExit[1]=0;wExit[2]=zexit;
%}
TRACE
%{
double r_m_min,r_m_max,r2;
int hit=0;
int hit_chamfer=0;
/*assuming the table to be sorted*/
ALLOW_BACKPROP;
PROP_Z0;
r_m_min = Table_Index(size_table,0,3);
r_m_max = Table_Index(size_table,size_table.rows-1,3);
r2 = (x*x + y*y);
/*TODO this should also check for plate width*/
hit = ( ( r2 > ( r_m_min-yheight )*( r_m_min-yheight ) ) && ( r2 < ( r_m_max + pore_th )*( r_m_max + pore_th ) ) );
if (hit){
/*we have a chance of hitting a ring - we might still miss due to beam divergence though*/
hit=0;
int ii=0;
int hit_chamfer;
while( !hit && ii<size_table.rows){
radius_m = Table_Index(size_table,ii,3);
radius_h = Table_Index(size_table,ii,2);
hit= ( ( x*x + y*y < radius_m*radius_m ) && ( x*x + y*y >(radius_m-yheight)*(radius_m-yheight) ) ) ;
ii++;
}
/*ii-1 is now the numbeer of the hit plate - unless it is outside all of them,
radius_p and radius_m are the relevant radii for this plate.*/
/*TODO figure out which pore we are at and set the side walls accordingly*/
hit_chamfer=0;
enum {LEFT, RIGHT, TOP, BOTTOM, EXIT, NONE} wall;
t_Table *reflec_table=NULL;
double R;
if(hit){
SCATTER;
int exit=0;
int intersections[5];
int i_small;
double l[5];
double l_small;
double nx,ny,nz;
int prm_idx;
while (!exit){
l_small=DBL_MAX;
wall=NONE;
double nx,ny,nz;
double wx,wy,wz;
/*exit plane*/
intersections[EXIT]=plane_intersect(l+EXIT,x,y,z,kx,ky,kz,nExit[0],nExit[1],nExit[2],wExit[0],wExit[1],zexit_vec[ii-1]);
if (intersections[EXIT] && l[EXIT]>DBL_EPSILON && l[EXIT]<l_small) {l_small=l[EXIT];i_small=intersections[EXIT];wall=EXIT;}
/*top surface - the real reflecting surface*/
intersections[TOP]=intersect_hyperboloid((l+TOP),x,y,z,kx,ky,kz,Z0,radius_m,&(nTop[0]),&(nTop[1]),&(nTop[2]));
if (intersections[TOP] && l[TOP]>DBL_EPSILON && l[TOP]<l_small) {l_small=l[TOP];i_small=intersections[TOP];wall=TOP;}
/*bottom surface*/
intersections[BOTTOM]=intersect_hyperboloid((l+BOTTOM),x,y,z,kx,ky,kz,Z0,radius_m-yheight,&(nBottom[0]),&(nBottom[1]),&(nBottom[2]));
if (intersections[BOTTOM] && l[BOTTOM]>DBL_EPSILON && l[BOTTOM]<l_small) {l_small=l[BOTTOM];i_small=intersections[BOTTOM];wall=BOTTOM;}
/*sort intersections ot find the smallest positive one*/
switch (wall){
case TOP:
/*handle top wall reflection*/
reflec_table=&reflec_top_table;
nx=nTop[0];ny=nTop[1];nz=nTop[2];
prm_idx=0;
break;
case BOTTOM:
/*handle bottom wall "reflection"*/
reflec_table=&reflec_bottom_table;
nx=nBottom[0];ny=nBottom[1];nz=nBottom[2];
prm_idx=1;
break;
case EXIT:
/*photon will exit pore*/
exit=1;
break;
}
if(exit){
continue;
}
PROP_DL(l_small);
double kix=kx,kiy=ky,kiz=kz;
double k=sqrt(kx*kx+ ky*ky + kz*kz);
double e=K2E*k;
double s=scalar_prod(kx,ky,kz,nx,ny,nz);
double theta=RAD2DEG*(M_PI_2-acos(s/k)); /*pi_2 since theta is supposed to be the grazing angle*/
/*if we have waviness alter the normal vector slightly*/
if(waviness!=0){
/*assuming theta to be small we might disregard atan*/
if(longw){
double dtheta;
if(theta<waviness){
dtheta=rand01()*(theta+waviness)-theta;
}else{
dtheta=randpm1()*waviness;
}
double tx,ty,tz;
vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
rotate(nx,ny,nz, nx,ny,nz, dtheta, tx,ty,tz);
}else{
/*waviness is also transversal but isotropic*/
double radius;
if(theta<waviness){
radius=atan(waviness);
randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx,radius);
}else{
radius=(atan(theta)+atan(waviness))/2.0;
randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx+radius-atan(theta),radius);
}
NORM(nx,ny,nz);
}/*reflect the photon through the surface normal*/
/*recompute theta*/
theta=RAD2DEG*0.5*acos(scalar_prod(kx,ky,kz,kix,kiy,kiz)/k/k);
}
/*reflect the photon through the surface normal*/
if(s!=0){
kx-=2*s*nx;
ky-=2*s*ny;
kz-=2*s*nz;
}
SCATTER;
if(reflec_table==NULL || reflec_table->rows==-1){
R=R_d;
}else{
R=Table_Value2d(*reflec_table,(e-e_min[prm_idx])/e_step[prm_idx], (theta-theta_min[prm_idx])/theta_step[prm_idx]);
}
p*=R;
}
}else if (hit_chamfer){
ABSORB;
}else{
/*no hit*/
ABSORB;
}
}
%}
FINALLY
%{
free(zexit_vec);
%}
MCDISPLAY
%{
circle("xy",0,0,0,radius_m);
circle("xy",0,0,0,radius_m-yheight);
circle("xy",0,0,zexit,radius_h);
circle("xy",0,0,zexit,radius_h-yheight);
%}
END
|