File: Detector_pn.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (175 lines) | stat: -rw-r--r-- 4,560 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Detector_pn
*
* %Identification
* Written by: Maria Thomsen (mariath@fys.ku.dk)
* Date: Jan 24, 2011
* Origin: NBI, KU
* Version: McXtrace 1.2
*
* Block of a attenuating material
* 
* %Description
* A scintillator detector model taking photoabsorption efficiency into account. As such it consitututes a
* more physical version of the PSD_monitor. Only direct absorption is taken into account.
*
* Example: Detector_pn(restore_xray=restore_flag,filename="detector_Si", material_datafile="Si.txt", xwidth=1e-2, yheight=1e-2,zdepth=1e-5)
*
* %Parameters
* INPUT PARAMETERS
*
* xwidth:[m]        Width of block.
* yheight: [m]      Height of block.
* zdepth: [m]       Thickness of block.
* material_datafile: [str]   File where the material parameters for the scintillator may be found. Format is similar to what may be found off the NIST website.
* nx: [m]           Number of pixel columns.
* ny: [m]           Number of pixel rows.
* filename: [str]   Name of file in which to store the detector image.
* restore_xray: [ ] If set, the monitor does not influence the xray state.
*
* CALCULATED PARAMETERS:
*
* PSD_N:    Array of xray counts
* PSD_p:    Array of xray weight counts
* PSD_p2:   Array of second moments
*
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %End
*******************************************************************************/
DEFINE COMPONENT Detector_pn

SETTING PARAMETERS (string material_datafile="Be.txt",nx=90, ny=90, string filename="", restore_xray=0,xwidth=1e-2,yheight=1e-2,zdepth=1e-6)

/*STATE PARAMETERS (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p)*/

SHARE
%{
  %include "read_table-lib"
%}

DECLARE
%{
  double xmax;
  double xmin;
  double ymax;
  double ymin;

  int Z;
  double At;
  double rho;
  t_Table T;

  DArray2d PSD_N;
  DArray2d PSD_p;
  DArray2d PSD_p2;
%}

INITIALIZE
%{
  int status=0;
 
  if(!xwidth || !yheight){
    fprintf(stderr,"%s: Detector has zero effective area\n",NAME_CURRENT_COMP);
    exit(0);
  }
  xmax=xwidth/2.0;
  xmin=-xmax;
  ymax=yheight/2.0;
  ymin=-ymax;

  //t_Table T;
  if ( (status=Table_Read(&T,material_datafile,0))==-1){
    fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",material_datafile,NAME_CURRENT_COMP);
    exit(-1);
  }
  char **header_parsed;
  header_parsed=Table_ParseHeader(T.header,"Z","A[r]","rho","sigma[a]");
  //if (!At) At=strtod(header_parsed[1],NULL);
  //if (!Z) Z=strtol(header_parsed[0],NULL,10);
  if (!rho) rho=strtod(header_parsed[2],NULL);
  
  if (xwidth  > 0) { xmax = xwidth/2;  xmin = -xmax; }
  if (yheight > 0) { ymax = yheight/2; ymin = -ymax; }

  if ((xmin >= xmax) || (ymin >= ymax)) {
    printf("Detector_pn: %s: Null detection area !\n"
        "ERROR        (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting",
        NAME_CURRENT_COMP);
    exit(0);
  }

  PSD_N = create_darr2d(nx, ny);
  PSD_p = create_darr2d(nx, ny);
  PSD_p2 = create_darr2d(nx, ny);
  
  // Use instance name for monitor output if no input was given
  if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}

TRACE
%{
  double alpha,e,k,mu;
  double l0,l1;
  int i,j;
  if (box_intersect(&l0,&l1,x,y,z,kx,ky,kz,xwidth,yheight,zdepth)){
    PROP_DL(l0);
    /*table interpolation*/
    k=sqrt(kx*kx+ky*ky+kz*kz);
    e=k*K2E;
    mu=Table_Value(T,e,1)*rho*1e2;

    l1-=l0; 
    p*=(1-exp(-mu*l1));

    //photon detected in surface pixel  
    if (x>xmin && x<xmax && y>ymin && y<ymax)
    {
      i = floor((x - xmin)*nx/(xmax - xmin));
      j = floor((y - ymin)*ny/(ymax - ymin));
#pragma acc atomic
      PSD_N[i][j] = PSD_N[i][j] + 1;
#pragma acc atomic
      PSD_p[i][j] = PSD_p[i][j] + p;
#pragma acc atomic
      PSD_p2[i][j] = PSD_p2[i][j] + p*p;
      SCATTER;
    }
    if (restore_xray) {
      RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
    }
  }
%}

SAVE
%{
    DETECTOR_OUT_2D(
        "Detector_pn",
        "X position [cm]",
        "Y position [cm]",
        xmin*100.0, xmax*100.0, ymin*100.0, ymax*100.0,
        nx, ny,
        &PSD_N[0][0],&PSD_p[0][0],&PSD_p2[0][0],
        filename);
%}
 
FINALLY
%{
  Table_Free(&T);
  destroy_darr2d(PSD_N);
  destroy_darr2d(PSD_p);
  destroy_darr2d(PSD_p2);
%}

 
MCDISPLAY
%{
  box(0,0,0,xwidth,yheight,zdepth,0, 0, 1, 0);
%}
END