File: SAXSPDB.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (232 lines) | stat: -rw-r--r-- 7,185 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*******************************************************************************
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SAXSPDB
*
* %Identification
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk) and Søren Kynde (kynde@nbi.dk)
* Date: May 2, 2012
* Origin: KU-Science
* Release: McXtrace 1.0
*
* A sample describing a thin solution of proteins. This components must be compiled 
* with the -lgsl and -lgslcblas flags (and possibly linked to the appropriate 
* libraries).
*
* %Description
* This components expands the formfactor amplitude of the protein on spherical
* harmonics and computes the scattering profile using these. The expansion is
* done on amino-acid level and does not take hydration layer into account.
* The component must have a valid .pdb-file as an argument.
*
* This component is very slow. You should rather use the SAXSPDBFast sample component.
*
* %Parameters
* RhoSolvent: [AA]    Scattering length density of the buffer.
* Concentration: [mM] Concentration of sample.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m]         Dimension of component in the x-direction.
* yheight: [m]        Dimension of component in the y-direction.
* zdepth: [m]         Dimension of component in the z-direction.
* SampleToDetectorDistance: [m]  Distance from sample to detector (for focusing the scattered x-rays).
* DetectorRadius: [m] Radius of the detector (for focusing the scattered x-rays).
* PDBFilepath: []     Path to the file describing the high resolution structure of the protein.
*
* %End
*******************************************************************************/

DEFINE COMPONENT SAXSPDB



SETTING PARAMETERS (RhoSolvent = 9.4e-14, Concentration = 0.01, AbsorptionCrosssection = 0.0,
    xwidth, yheight, zdepth, 
		    SampleToDetectorDistance, DetectorRadius,
    string PDBFilepath = "PDBfile.pdb")


DEPENDENCY " @GSLFLAGS@ "
NOACC

/*X-ray PARAMETERS (x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p)*/

SHARE COPY SAXSPDBFast
EXTEND %{
  void Protein_Beads_get_coords(BeadStruct Residue, double *x, double *y, double *z)
  {
    *x = Residue.x;
    *y = Residue.y;
    *z = Residue.z;
  }
%}

DECLARE
%{
	double         Absorption;
	double         NumberDensity;

	// Protein properties
	// double complex Matrix[SAXSPDBOrderOfHarmonics+1][SAXSPDBOrderOfHarmonics+1];
	ProteinStruct  Protein;
%}

INITIALIZE
%{
  // Rescale concentration into number of aggregates per m^3 times 10^-4
  NumberDensity = Concentration * 6.02214129e19;

  // Standard sample handling
	if (!xwidth || !yheight || !zdepth) {
	    exit(fprintf(stderr, "SAXSPDB: %s: ERROR: Sample has no volume - check parameters.\n", NAME_CURRENT_COMP));
	}

  // count the number of residues
	Absorption               = AbsorptionCrosssection;
  Protein.NumberOfResidues = CountResidues(PDBFilepath);
  Protein.Beads            = calloc(Protein.NumberOfResidues,sizeof(BeadStruct));
  if (Protein.Beads == NULL) 
    exit(fprintf(stderr, "SAXSPDB: %s: ERROR: memory allocation\n",  NAME_CURRENT_COMP));

  // initialize the protein from the PDB
	ReadAminoPDB(PDBFilepath, &Protein);
	MPI_MASTER(
	printf("SAXSPDB: %s: Scattering from %s with %d residues\n", 
	  NAME_CURRENT_COMP, PDBFilepath, Protein.NumberOfResidues);
  );
  
%}

TRACE
%{
	// Declarations	
	double l0; 
	double l1; 
	double l_full;
	double l;
	double l_1;
	double q;
	double Intensity;
	double Weight;
	double IntensityPart;
	double SolidAngle;
	double qx; 
	double qy; 
	double qz;
	double k;
	double dl;
	double kx_i;
	double ky_i;
	double kz_i;
	char Intersect = 0;
	double Slope;	
	double Offset;
	int    i,j,ResidueID;
	double complex Matrix[SAXSPDBOrderOfHarmonics+1][SAXSPDBOrderOfHarmonics+1];

	// Computation
  Intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
    
	if (Intersect) {

		if (l0 < 0.0) {
			fprintf(stderr, "SAXSPDBFast: %s: Photon already inside sample - absorbing...\n", NAME_CURRENT_COMP);
			ABSORB;
                }

		// Compute properties of photon
		k = sqrt(pow(kx, 2) + pow(ky, 2) + pow(kz, 2));
		l_full = l1 - l0;
		dl = rand01() * (l1 - l0) + l0; 
		PROP_DL(dl);                  
		l = dl - l0;

		// Store properties of incoming photon
		kx_i = kx;
		ky_i = ky;
		kz_i = kz;

		// Generate new direction of photon
		randvec_target_circle(&kx, &ky, &kz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);

		NORM(kx, ky, kz);

		kx *= k;
		ky *= k;
		kz *= k;

		// Compute q
		qx = kx_i - kx;
		qy = ky_i - ky;
		qz = kz_i - kz;

		q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));

		// Compute scattering for a given q-value
		// ResetMatrix(Matrix, SAXSPDBOrderOfHarmonics);
		for (i = 0; i <= SAXSPDBOrderOfHarmonics; ++i)
		    for (j = 0; j <= SAXSPDBOrderOfHarmonics; ++j)
		        Matrix[i][j] = 0.0;

		for (ResidueID = 0; ResidueID < Protein.NumberOfResidues; ++ResidueID) {
	      // ExpandStructure(Matrix, &Protein, ResidueID, qDummy, RhoSolvent);		
	      double Legendre[SAXSPDBOrderOfHarmonics + 1];
		    double Bessel[SAXSPDBOrderOfHarmonics + 1];

		    // Residue information
		    BeadStruct   Residue = Protein.Beads[ResidueID];
		    const double Volume = Residue.Volume;
		    const double DeltaRhoProtein = Residue.ScatteringLength - Volume * RhoSolvent;
		    
        double X,Y,Z;
        Protein_Beads_get_coords(Residue, &X, &Y, &Z);
		    X = (X * Protein.Beads[ResidueID].ScatteringLength - 
                        RhoSolvent * Volume * Protein.Beads[ResidueID].xv) / DeltaRhoProtein;

		    Y = (Y * Protein.Beads[ResidueID].ScatteringLength - 
                        RhoSolvent * Volume * Protein.Beads[ResidueID].yv) / DeltaRhoProtein;

		    Z = (Z * Protein.Beads[ResidueID].ScatteringLength - 
                        RhoSolvent * Volume * Protein.Beads[ResidueID].zv) / DeltaRhoProtein;

		    // Convert bead position to spherical coordinates
		    const double Radius = sqrt(pow(X, 2) + pow(Y, 2) + pow(Z, 2));
		    const double Theta  = acos(Z / Radius);
		    const double C      = acos(X / (Radius * sin(Theta))) * Sign(Y);

		    // Expand protein structure on harmonics
		    gsl_sf_bessel_jl_array(SAXSPDBOrderOfHarmonics, q * Radius, Bessel);

		    for (i = 0; i <= SAXSPDBOrderOfHarmonics; ++i) {
		        gsl_sf_legendre_sphPlm_array(SAXSPDBOrderOfHarmonics, i, cos(Theta), &Legendre[i]);

		        for(j = i; j <= SAXSPDBOrderOfHarmonics; ++j) {
		            Matrix[j][i] += sqrt(4.0 * PI) * cpow(_Complex_I, j) * DeltaRhoProtein * Bessel[j] * Legendre[j] * Polar(1.0, -i * C);
		        }
		    }
		    
	  } // for ResidueID

	 	Intensity = 0;
	 	// ComputeIntensity(Matrix, SAXSPDBOrderOfHarmonics);
	 	for (i = 0; i <= SAXSPDBOrderOfHarmonics; ++i) {
		    for (j = 0; j <= i; ++j) {
		        Intensity += ((j > 0) + 1.0) * pow(cabs(Matrix[i][j]), 2);
		    }
		}

		// Compute new weight
		p *= l_full * SolidAngle / (4.0 * PI) * NumberDensity * Intensity * exp(- Absorption * (l + l1));
		
		SCATTER;
	}
%}

MCDISPLAY
%{
  box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}

END