File: SAXSQMonitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (219 lines) | stat: -rw-r--r-- 6,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*******************************************************************************
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SAXSQMonitor
*
* %Identification
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Based on a SANS-component in McStas by Søren Kynde
* Date: May 2, 2012
* Origin: KU-Science
* Release: McXtrace 1.0
*
* A circular detector measuring the radial average of intensity as a function 
* of the momentum transform in the sample.
*
* %Description
* A circular detector measuring the radial average of intensity as a function 
* of the momentum transform in the sample. The q-range is set up to
*   qMax = 4 * PI * sin(TwoThetaMax / 2.0) / LambdaMin;
*
* Example: SAXSQMonitor( RadiusDetector = 0.1, DistanceFromSample = 0.5, LambdaMin = 1, Lambda0 = 1.54, NumberOfBins = 2000 )
* Example: SAXSQMonitor( RadiusDetector = 0.1, qMax = 5, Lambda0 = 1.54, NumberOfBins = 2000 )
*
* %Parameters
* RadiusDetector:     [m] Radius of the detector (in the xy-plane).
* DistanceFromSample: [m] Distance from the sample to this component.
* LambdaMin:         [AA] Max sensitivity in lambda - used to compute the highest possible value of momentum transfer, q.
* qMax:          [Angs-1] Max momentum for the Q-monitor. use either qMax or LambdaMin.
* NumberOfBins:       [1] Number of bins in the r (and q).
* RFilename:        [str] File used for storing I(r).
* qFilename:        [str] File used for storing I(q).
* Lambda0:         [Angs] If given, the momentum transfers of all rays are computed from this value. Otherwise, instrumental effects are negated Lambda0=2PI/k.
* restore_xray:        [] If set to 1, the component restores the original x-ray.
*
* %End
*******************************************************************************/

DEFINE COMPONENT SAXSQMonitor


SETTING PARAMETERS (string RFilename="RDetectror", string qFilename="QDetector", int NumberOfBins=100, restore_xray=0,
    RadiusDetector, DistanceFromSample, LambdaMin = 1.0, Lambda0 = 0.0, qMax=0)



/*X-ray PARAMETERS (x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p)*/

DECLARE
%{
    DArray1d Nofq;
    DArray1d Iofq;
    DArray1d IofqSquared;

    DArray1d NofR;
    DArray1d IofR;
    DArray1d IofRSquared;
%}

INITIALIZE
%{
    Nofq=create_darr1d(NumberOfBins);
    Iofq=create_darr1d(NumberOfBins);
    IofqSquared=create_darr1d(NumberOfBins);
    NofR=create_darr1d(NumberOfBins);
    IofR=create_darr1d(NumberOfBins);
    IofRSquared=create_darr1d(NumberOfBins);
    
    if (DistanceFromSample <= 0)
      exit(fprintf(stderr,"%s: ERROR: you must set the DistanceFromSample > 0.\n", NAME_CURRENT_COMP));

    if (qMax<=0 && LambdaMin) {
      double TwoThetaMax = atan(RadiusDetector / DistanceFromSample);
      qMax = 4 * PI * sin(TwoThetaMax / 2.0) / LambdaMin;
    }
    
    // Use instance name for monitor output if no input was given
    if (!strcmp(RFilename,"\0")) sprintf(RFilename,"%s_R", NAME_CURRENT_COMP);
    if (!strcmp(qFilename,"\0")) sprintf(qFilename,"%s_Q", NAME_CURRENT_COMP);
%}

TRACE
%{
    int i;
    double TwoTheta;
    double Lambda;

    double R;
    double RLow;
    double RHigh;

    double q;
    double qLow;
    double qHigh;

    double TwoThetaLow; 
    double TwoThetaHigh;
    double AreaOfSlice;
    
    PROP_Z0;

    R = sqrt(x*x+y*y);

    // Computation of q
    if (Lambda0 <= 0.0) {
      Lambda = 2.0 * PI / sqrt(kx*kx+ky*ky+kz*kz);
    } else {
      Lambda = Lambda0;
    }

    TwoTheta = atan(R / DistanceFromSample);
    q = 4.0 * PI * sin(TwoTheta / 2.0) / Lambda;

    // Put photon in the correct r-bin
    if (R < RadiusDetector) {
      i = floor(NumberOfBins * R / RadiusDetector);

      RLow = RadiusDetector / NumberOfBins * i;
      RHigh = RadiusDetector / NumberOfBins * (i + 1);

      TwoThetaLow = atan(RLow / DistanceFromSample);
      TwoThetaHigh = atan(RHigh / DistanceFromSample);

      AreaOfSlice = fabs((cos(2.0 * TwoThetaLow) - cos(2.0 * TwoThetaHigh)) * 2.0 * PI);

#pragma acc atomic
      NofR[i] = NofR[i] + 1;
      double p_A=p/AreaOfSlice;
#pragma acc atomic
      IofR[i] += p_A;
      double p2_A2= p*p/(AreaOfSlice*AreaOfSlice);
#pragma acc atomic
      IofRSquared[i] += p2_A2;
    }
      
    // Put photon in the correct q-bin
    if (q < qMax) {
      i = floor(NumberOfBins * q / qMax);

      qLow = qMax / NumberOfBins * i;
      qHigh = qMax / NumberOfBins * (i + 1);

      TwoThetaLow = asin(qLow * Lambda / (4.0 * PI));
      TwoThetaHigh = asin(qHigh * Lambda / (4.0 * PI));

      AreaOfSlice = fabs((cos(2.0 * TwoThetaLow) - cos(2.0 * TwoThetaHigh)) * 2.0 * PI);

#pragma acc atomic
      Nofq[i] = Nofq[i] + 1;
      double p_A=p/AreaOfSlice;
#pragma acc atomic
      Iofq[i] += p_A;
      double p2_A2= p*p/(AreaOfSlice*AreaOfSlice);
#pragma acc atomic
      IofqSquared[i] += p2_A2;

      SCATTER;
    }

    // Restore xray if requested
    if (restore_xray) {
      RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
    }
%}

SAVE
%{
  // Output I(r)
    DETECTOR_OUT_1D(
        "QMonitor - Radially averaged distribution",
        "Radius [m]",
        "I(r)",
        "r", 
        0.0, 
        RadiusDetector, 
        NumberOfBins,
        NofR,
        IofR,
        IofRSquared,
        RFilename
        );

    // Output I(q)
    char fname1[256];
    snprintf(fname1, 256, "%s_q", NAME_CURRENT_COMP);
    // we use mcdetector_out_nD in order to update the [comp_name]_I symbol for the 2nd output
    mcdetector_out_1D(
        "QMonitor - Distribution in q (Radially averaged)",
        "q [1 / AA]",
        "I(q)",
        "q", 
        0.0, 
        qMax, 
        NumberOfBins,
        Nofq,
        Iofq,
        IofqSquared,
        qFilename, fname1,POS_A_CURRENT_COMP,ROT_A_CURRENT_COMP
        );
%}

FINALLY
%{
  destroy_darr1d(Nofq);
  destroy_darr1d(Iofq);
  destroy_darr1d(IofqSquared);
  destroy_darr1d(NofR);
  destroy_darr1d(IofR);
  destroy_darr1d(IofRSquared);
%}

MCDISPLAY
%{
	circle("xy", 0, 0, 0, RadiusDetector);
%}

END