File: Polycrystal.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (1548 lines) | stat: -rw-r--r-- 71,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
/**********************************************************************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Polycrystal
*
* %Identification
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
*
* Based on code by: Erik Knudsen, Kenichi Oikawa, and Alberto Cereser
* Date: January 2015
* Origin: University of Copenhagen
* Release: McXtrace 1.0
*
* Polycrystal made from single crystal-like voxels
*
* %Description
* The component creates a threedimensional grid of cubic instances of the Single_crystal-component,through
* which the rays are propagated. The component relies on a list of possible orientations and stretches of the
* initial unit cell and a list correlating each voxel of the polycrystal to an entry in the list of rotations
* and stretches.
*
* Example: Polycrystal( MapFile= "polycrystal_1layer_2orts.map", OrientationsFile= "stretch_2orts.orts", 
*   ReflectionsDatafile= "GeReduced.lau", xwidth= 200e-6, yheight= 200e-6, zdepth = 50e-6, 
*   DeltadOverd = 0.001, Mosaicity = 1, SigmaAbsorbtion  = 0.0, SigmaIncoherent = 0.0, 
*   MaxNumberOfReflections    = 1, ProbabilityOfTransmission = 0.5, 
*   ax = 5.6579, ay = 0.0000, az = 0.0000, bx = 0.0000, by = 5.6579, bz = 0.0000, cx = 0.0000, cy = 0.0000, cz = 5.6579 )
*
* %Parameters
* MapFile:                   [str]  File describing, which orientation is found in which voxel
* OrientationsFile:          [str]  File describing the different orientations
* ReflectionsDatafile:       [str]  File describing the reflections in the relevant lattice (usually in .lau-format)
* MaterialDatafile:          [str]  File describing the scattering and absorbtion properties of the material
* xwidth:                    [m]    Width of the sample
* yheight:                   [m]    Height of the sample
* zdepth:                    [m]    Depth of the sample
* ax:                        [AA]   x-coordinate of the first internal unit cell vector in the sample
* ay:                        [AA]   y-coordinate of the first internal unit cell vector in the sample
* az:                        [AA]   z-coordinate of the first internal unit cell vector in the sample
* bx:                        [AA]   x-coordinate of the second internal unit cell vector in the sample
* by:                        [AA]   y-coordinate of the second internal unit cell vector in the sample
* bz:                        [AA]   z-coordinate of the second internal unit cell vector in the sample
* cx:                        [AA]   x-coordinate of the third internal unit cell vector in the sample
* cy:                        [AA]   y-coordinate of the third internal unit cell vector in the sample
* cz:                        [AA]   z-coordinate of the third internal unit cell vector in the sample
* Mosaicity:                 [moa]  Gaussian mosaicity
* MosaicityA:                [moa]  Anisotropic mosaicity around the first unit cell vector
* MosaicityB:                [moa]  Anisotropic mosaicity around the second unit cell vector
* MosaicityC:                [moa]  Anisotropic mosaicity around the third unit cell vector
* DeltadOverd:               [1]    Statistical description of the lattice spacing
* ProbabilityOfTransmission: [0-1]  Probability that a ray will not interact with the sample
* SigmaAbsorbtion:           [fm^2] Absorbtion crosssection of the sample
* SigmaIncoherent:           [fm^2] Incoherent crosssection of the sample
* MaxNumberOfReflections:    [1]    Highest number of allowed scattering events in the entire crystal - to prevent computationally expensive high-order multiple scattering. If this parameter is set to 0, all possible orders of scattering are considered.
* Reciprocal:                [0/1]  If this parameter is set to 0, then the lattice vectors should be given in real space. Anything else implies that the vectors are given in reciprocal space.
* verbose:                   [0/1]  If nonzero - output more info to the console.
* %End
***********************************************************************************************************************************/

DEFINE COMPONENT Polycrystal



SETTING PARAMETERS(string MapFile = "",
                   string OrientationsFile = "",
                   string ReflectionsDatafile = "Si.lau",
                   string MaterialDatafile    = "Si.txt",

                   xwidth  = 0.0,
                   yheight = 0.0,
                   zdepth  = 0.0,

                   ax = 5.43, ay = 0.00, az = 0.00,
                   bx = 0.00, by = 5.43, bz = 0.00,
                   cx = 0.00, cy = 0.00, cz = 5.43,

                   Mosaicity  = 3.0,
                   MosaicityA = 0.0,
                   MosaicityB = 0.0,
                   MosaicityC = 0.0,

                   DeltadOverd               = 0.01,
                   ProbabilityOfTransmission = 0.01,
                   SigmaAbsorbtion           = 0.0,
                   SigmaIncoherent           = 0.0,
                   MaxNumberOfReflections    = 1,
                   Reciprocal                = 0,
                   verbose                   = 0)



SHARE
%{
    // External libraries
    %include "read_table-lib"
#ifndef MXPX_REFL_SLIST_SIZE
#define MXPX_REFL_SLIST_SIZE 128
#endif

    // Structs for hkl-data
    struct hklDataStruct {
        // Miller indices
        int h;
        int k;
        int l;

        // Structure factor
        double F2;

        // Coordinates in reciprocal space
        double Tau[3];
        double TauLength;

        // Local coordinate system
        double u1[3];
        double u2[3];
        double u3[3];

        // Gaussians
        double Sigma[3];
        double TotalSigma;

        double m[3];
        double GaussianCutoff;
    };

    struct TauDataStruct {
        // Scattering properties
        double Reflectivity;
        double Crosssection;

        // Index in reflection table
        int Index;

        //The following vectors are in local koordinates
        //Initial wave vector
        double ki[3];

        // Rho = ki - tau
        double Rho[3];
        double RhoLength;

        // Origin of the Ewald sphere tangent plane
        double Origin[3];

        // Normal vector of the Ewald sphere tanget plane
        double NormalVector[3];

        // Vectors spanning the Ewald sphere tangent plane
        double b1[3];
        double b2[3];

        // Cholesky decomposition of the matrix L
        double L11;
        double L12;
        double L22;

        double DeterminantL;

        // Center of Gaussian on tangent plane
        double GaussCenterx;
        double GaussCentery;
    };

    struct hklStruct {
        // List of reflections
        struct hklDataStruct *hklData;
        int NumberOfReflections;

        // Format of columns in list: [h, k, l, F, F2]
        int ColumnOrder[5];

        // Flags used to raise warnings
        int Recip;

        // Sigma of delta d / d
        double Deltad_d;

        // Coordinates of unit cell vectors
        double LatticeVectora[3];
        double LatticeVectorb[3];
        double LatticeVectorc[3];

        double LatticeVectoraLength;
        double LatticeVectorbLength;
        double LatticeVectorcLength;

        double ReciprocalLatticeVectora[3];
        double ReciprocalLatticeVectorb[3];
        double ReciprocalLatticeVectorc[3];

        // Lattice parameters and angles
        double LatticeAngleA;
        double LatticeAngleB;
        double LatticeAngleC;

        // Absorbtion crosssection
        double SigmaAbs;

        // Incoherent crosssection
        double SigmaInc;

        // Unit cell volume
        double VolumeOfUnitCell;
    };

    // Struct for absorption-data
    struct AbsorbtionStruct {
        int muc;
        t_Table Table;
    };

    // I/O Function for hkl-data
    int ReadReflectionData(char *ReflectionsDatafile, struct hklStruct *hklInfo, double Mosaicity, double MosaicityA, double MosaicityB, double MosaicityC, double *MosaicityAB) {

        // Declarations
        int i;
        int NumberOfRows;
        int PrintOrientations = 0;

        // Structs for storing read-in info
        struct hklDataStruct *hklData;

        t_Table sTable;

        // Temporary variables
        double Temp[3];

        char **Parsing;
        int FlagMissingFile = 0;
        int NumberOfAtoms = 1;

        // hkl-info
        double asLength;
        double bsLength;
        double csLength;

        double b1[3];
        double b2[3];

        // Mosaicity
        double ConvertedMosaicityA;
        double ConvertedMosaicityB;
        double ConvertedMosaicityC;

        // Vectors used to calculate anisotropic mosaicity
        double XiA[3];
        double XiALength;

        double XiB[3];
        double XiBLength;

        double XiC[3];
        double XiCLength;

        double Jacobiann[3];
        double Jacobianv[3];

        // Variables used to calculate in-plane anisotropic mosaicity
        double c1;
        double c2;
        double Determinant;
        double SigmaTauC;

        double em[3];
        double TauA[3];
        double TauB[3];

        // Read file
        if (!ReflectionsDatafile || !strlen(ReflectionsDatafile) || !strcmp(ReflectionsDatafile, "NULL") || !strcmp(ReflectionsDatafile, "0")) {
            hklInfo->NumberOfReflections = 0;
            FlagMissingFile = 1;
        }

        if (!FlagMissingFile) {
            if (Table_Read(&sTable, ReflectionsDatafile, 1) <= 0 
               || sTable.columns < 4) {
              fprintf(stderr, "Error (%s): The number of columns in %s should be at least %d for [h, k, l, F2]\n", "ReadReflectionData", ReflectionsDatafile, 4);
              return(-1);
            }

            if (!sTable.rows) {
              fprintf(stderr, "Error (%s): The number of rows in %s should be at least %d\n", "ReadReflectionData", 1);
              return(-1);
            } else {
                NumberOfRows = sTable.rows;
            }

            // Parsing of header
            Parsing = Table_ParseHeader(sTable.header,
                    "sigma_abs",
                    "sigma_a",
                    "sigma_inc",
                    "sigma_i",
                    "column_h",
                    "column_k",
                    "column_l",
                    "column_F",
                    "column_F2",
                    "Delta_d/d",
                    "lattice_a",
                    "lattice_b",
                    "lattice_c",
                    "lattice_aa",
                    "lattice_bb",
                    "lattice_cc",
                    "nb_atoms",
                    "multiplicity",
                    NULL);

            if (Parsing) {

                if (Parsing[0] && !hklInfo->SigmaAbs)       hklInfo->SigmaAbs      = atof(Parsing[0]);
                if (Parsing[1] && !hklInfo->SigmaAbs)       hklInfo->SigmaAbs      = atof(Parsing[1]);
                if (Parsing[2] && !hklInfo->SigmaInc)       hklInfo->SigmaInc      = atof(Parsing[2]);
                if (Parsing[3] && !hklInfo->SigmaInc)       hklInfo->SigmaInc      = atof(Parsing[3]);
                if (Parsing[4])                   	    	       hklInfo->ColumnOrder[0]       = atoi(Parsing[4]);
                if (Parsing[5])                   	    	       hklInfo->ColumnOrder[1]       = atoi(Parsing[5]);
                if (Parsing[6])                   	    	       hklInfo->ColumnOrder[2]       = atoi(Parsing[6]);
                if (Parsing[7])                   	    	       hklInfo->ColumnOrder[3]       = atoi(Parsing[7]);
                if (Parsing[8])                   	    	       hklInfo->ColumnOrder[4]       = atoi(Parsing[8]);
                if (Parsing[9] && hklInfo->Deltad_d < 0)        hklInfo->Deltad_d             = atof(Parsing[9]);
                if (Parsing[10] && !hklInfo->LatticeVectoraLength) hklInfo->LatticeVectoraLength = atof(Parsing[10]);
                if (Parsing[11] && !hklInfo->LatticeVectorbLength) hklInfo->LatticeVectorbLength = atof(Parsing[11]);
                if (Parsing[12] && !hklInfo->LatticeVectorcLength) hklInfo->LatticeVectorcLength = atof(Parsing[12]);
                if (Parsing[13] && !hklInfo->LatticeAngleA)        hklInfo->LatticeAngleA        = atof(Parsing[13]);
                if (Parsing[14] && !hklInfo->LatticeAngleB)        hklInfo->LatticeAngleB        = atof(Parsing[14]);
                if (Parsing[15] && !hklInfo->LatticeAngleC)        hklInfo->LatticeAngleC        = atof(Parsing[15]);
                if (Parsing[16]) 					    	       NumberOfAtoms                 = atof(Parsing[16]);
                if (Parsing[17]) 					               NumberOfAtoms                 = atof(Parsing[17]);

                for (i = 0; i < 18; ++i) {

                    if (Parsing[i]) {
                        free(Parsing[i]);
                    }
                }

                free(Parsing);
            }
        }

        // Assign variables
        if (NumberOfAtoms > 1) {
            hklInfo->SigmaAbs *= NumberOfAtoms;
            hklInfo->SigmaInc *= NumberOfAtoms;
        }

        // Special cases for the structure definition
        if (hklInfo->LatticeVectora[0] || hklInfo->LatticeVectora[1] || hklInfo->LatticeVectora[2]) {
            hklInfo->LatticeVectoraLength = 0;
        }

        if (hklInfo->LatticeVectorb[0] || hklInfo->LatticeVectorb[1] || hklInfo->LatticeVectorb[2]) {
            hklInfo->LatticeVectorbLength = 0;
        }

        if (hklInfo->LatticeVectorc[0] || hklInfo->LatticeVectorc[1] || hklInfo->LatticeVectorc[2]) {
            hklInfo->LatticeVectorcLength = 0;
        }

        // Compute the norm from vector a if missing
        if (hklInfo->LatticeVectora[0] || hklInfo->LatticeVectora[1] || hklInfo->LatticeVectora[2]) {
            asLength = sqrt(hklInfo->LatticeVectora[0] * hklInfo->LatticeVectora[0] + hklInfo->LatticeVectora[1] * hklInfo->LatticeVectora[1] + hklInfo->LatticeVectora[2] * hklInfo->LatticeVectora[2]);

            if (!hklInfo->LatticeVectorb[0] && !hklInfo->LatticeVectorb[1] && !hklInfo->LatticeVectorb[2]) {
                hklInfo->LatticeVectoraLength = hklInfo->LatticeVectorbLength = asLength;
            }

            if (!hklInfo->LatticeVectorc[0] && !hklInfo->LatticeVectorc[1] && !hklInfo->LatticeVectorc[2]) {
                hklInfo->LatticeVectoraLength = hklInfo->LatticeVectorcLength = asLength;
            }
        }

        if (hklInfo->LatticeVectoraLength && !hklInfo->LatticeVectorbLength) {
            hklInfo->LatticeVectorbLength = hklInfo->LatticeVectoraLength;
        }

        if (hklInfo->LatticeVectorbLength && !hklInfo->LatticeVectorcLength) {
            hklInfo->LatticeVectorcLength = hklInfo->LatticeVectorbLength;
        }

        // Compute the lattive angles if not set from data file. Not used when in vector mode
        if (hklInfo->LatticeVectoraLength && !hklInfo->LatticeAngleA) {
            hklInfo->LatticeAngleA = 90;
        }

        if (hklInfo->LatticeAngleA && !hklInfo->LatticeAngleB) {
            hklInfo->LatticeAngleB = hklInfo->LatticeAngleA;
        }

        if (hklInfo->LatticeAngleB && !hklInfo->LatticeAngleC) {
            hklInfo->LatticeAngleC = hklInfo->LatticeAngleB;
        }

        // Parameters consistency checks
        if (!hklInfo->LatticeVectora[0] && !hklInfo->LatticeVectora[1] && !hklInfo->LatticeVectora[2] && !hklInfo->LatticeVectoraLength) {
            fprintf(stderr, "Error (%s): Wrong a lattice vector definition.\n", "ReadReflectionData");
            return(0);
        }

        if (!hklInfo->LatticeVectorb[0] && !hklInfo->LatticeVectorb[1] && !hklInfo->LatticeVectorb[2] && !hklInfo->LatticeVectorbLength) {
            fprintf(stderr, "Error (%s): Wrong b lattice vector definition.\n", "ReadReflectionData");
            return(0);
        }

        if (!hklInfo->LatticeVectorc[0] && !hklInfo->LatticeVectorc[1] && !hklInfo->LatticeVectorc[2] && !hklInfo->LatticeVectorcLength) {
            fprintf(stderr, "Error (%s): Wrong c lattice vector definition.\n", "ReadReflectionData");
            return(0);
        }

        if (hklInfo->LatticeAngleA && hklInfo->LatticeAngleB && hklInfo->LatticeAngleC && hklInfo->Recip) {
            fprintf(stderr, "Error (%s): Selecting reciprocal cell and angles is unmeaningful.\n", "ReadReflectionData");
            return(0);
        }

        // When lengths a, b, c and angles are given (instead of vectors a, b, c)
        if (hklInfo->LatticeAngleA && hklInfo->LatticeAngleB && hklInfo->LatticeAngleC) {

            if (hklInfo->LatticeVectoraLength) {
                asLength = hklInfo->LatticeVectoraLength;
            } else {
                asLength = sqrt(pow(hklInfo->LatticeVectora[0], 2) +
                        pow(hklInfo->LatticeVectora[1], 2) +
                        pow(hklInfo->LatticeVectora[2], 2));
            }

            if (hklInfo->LatticeVectorbLength) {
                bsLength = hklInfo->LatticeVectorbLength;
            } else {
                bsLength = sqrt(pow(hklInfo->LatticeVectorb[0], 2) +
                        pow(hklInfo->LatticeVectorb[1], 2) +
                        pow(hklInfo->LatticeVectorb[2], 2));
            }

            if (hklInfo->LatticeVectorcLength) {
                csLength = hklInfo->LatticeVectorcLength;
            } else {
                csLength = sqrt(pow(hklInfo->LatticeVectorc[0], 2) +
                        pow(hklInfo->LatticeVectorc[1], 2) +
                        pow(hklInfo->LatticeVectorc[2], 2));
            }

            hklInfo->LatticeVectorb[2] = asLength;
            hklInfo->LatticeVectorb[1] = 0.0;
            hklInfo->LatticeVectorb[0] = 0.0;

            hklInfo->LatticeVectora[2] = bsLength * cos(hklInfo->LatticeAngleC * DEG2RAD);
            hklInfo->LatticeVectora[1] = bsLength * sin(hklInfo->LatticeAngleC * DEG2RAD);
            hklInfo->LatticeVectora[0] = 0.0;

            hklInfo->LatticeVectorc[2] = csLength * cos(hklInfo->LatticeAngleB * DEG2RAD);
            hklInfo->LatticeVectorc[1] = csLength * (cos(hklInfo->LatticeAngleA * DEG2RAD) - cos(hklInfo->LatticeAngleC * DEG2RAD) * cos(hklInfo->LatticeAngleB * DEG2RAD)) / sin(hklInfo->LatticeAngleC * DEG2RAD);
            hklInfo->LatticeVectorc[0] = sqrt(pow(csLength, 2) -
                    pow(hklInfo->LatticeVectorc[2], 2) -
                    pow(hklInfo->LatticeVectorc[1], 2));

            if (PrintOrientations) {
                fprintf(stderr, "INFO (%s): \nStructure: \na = %g b = %g c = %g \naa = %g bb = %g cc = %g \n", "ReadReflectionData", asLength, bsLength, csLength, hklInfo->LatticeAngleA, hklInfo->LatticeAngleB, hklInfo->LatticeAngleC);
            }
        } else {

            if (!hklInfo->Recip) {

                if (PrintOrientations) {
                    fprintf(stderr, "INFO (%s): \nStructure; \na = [%g, %g, %g] \nb = [%g, %g, %g] \nc = [%g, %g, %g] \n", "ReadReflectionData", hklInfo->LatticeVectora[0] ,hklInfo->LatticeVectora[1] ,hklInfo->LatticeVectora[2], hklInfo->LatticeVectorb[0] ,hklInfo->LatticeVectorb[1] ,hklInfo->LatticeVectorb[2], hklInfo->LatticeVectorc[0] ,hklInfo->LatticeVectorc[1] ,hklInfo->LatticeVectorc[2]);
                }

            } else {

                if (PrintOrientations) {
                    fprintf(stderr, "INFO (%s): \nStructure: \na* = [%g, %g, %g] \nb* = [%g, %g, %g] \nc* = [%g, %g, %g] \n", "ReadReflectionData", hklInfo->LatticeVectora[0] ,hklInfo->LatticeVectora[1] ,hklInfo->LatticeVectora[2], hklInfo->LatticeVectorb[0] ,hklInfo->LatticeVectorb[1] ,hklInfo->LatticeVectorb[2], hklInfo->LatticeVectorc[0] ,hklInfo->LatticeVectorc[1] ,hklInfo->LatticeVectorc[2]);
                }
            }
        }

        // Compute reciprocal or direct lattice vectors
        if (!hklInfo->Recip) {
            vec_prod(Temp[0], Temp[1], Temp[2], hklInfo->LatticeVectorb[0], hklInfo->LatticeVectorb[1], hklInfo->LatticeVectorb[2], hklInfo->LatticeVectorc[0], hklInfo->LatticeVectorc[1], hklInfo->LatticeVectorc[2]);
            hklInfo->VolumeOfUnitCell = fabs(scalar_prod(hklInfo->LatticeVectora[0], hklInfo->LatticeVectora[1], hklInfo->LatticeVectora[2], Temp[0], Temp[1], Temp[2]));

            hklInfo->ReciprocalLatticeVectora[0] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[0];
            hklInfo->ReciprocalLatticeVectora[1] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[1];
            hklInfo->ReciprocalLatticeVectora[2] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[2];

            vec_prod(Temp[0], Temp[1], Temp[2], hklInfo->LatticeVectorc[0], hklInfo->LatticeVectorc[1], hklInfo->LatticeVectorc[2], hklInfo->LatticeVectora[0], hklInfo->LatticeVectora[1], hklInfo->LatticeVectora[2]);

            hklInfo->ReciprocalLatticeVectorb[0] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[0];
            hklInfo->ReciprocalLatticeVectorb[1] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[1];
            hklInfo->ReciprocalLatticeVectorb[2] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[2];

            vec_prod(Temp[0], Temp[1], Temp[2], hklInfo->LatticeVectora[0], hklInfo->LatticeVectora[1], hklInfo->LatticeVectora[2], hklInfo->LatticeVectorb[0], hklInfo->LatticeVectorb[1], hklInfo->LatticeVectorb[2]);

            hklInfo->ReciprocalLatticeVectorc[0] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[0];
            hklInfo->ReciprocalLatticeVectorc[1] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[1];
            hklInfo->ReciprocalLatticeVectorc[2] = 2.0 * M_PI / hklInfo->VolumeOfUnitCell * Temp[2];

        } else {
            hklInfo->ReciprocalLatticeVectora[0] = hklInfo->LatticeVectora[0];
            hklInfo->ReciprocalLatticeVectora[1] = hklInfo->LatticeVectora[1];
            hklInfo->ReciprocalLatticeVectora[2] = hklInfo->LatticeVectora[2];

            hklInfo->ReciprocalLatticeVectorb[0] = hklInfo->LatticeVectorb[0];
            hklInfo->ReciprocalLatticeVectorb[1] = hklInfo->LatticeVectorb[1];
            hklInfo->ReciprocalLatticeVectorb[2] = hklInfo->LatticeVectorb[2];

            hklInfo->ReciprocalLatticeVectorc[0] = hklInfo->LatticeVectorc[0];
            hklInfo->ReciprocalLatticeVectorc[1] = hklInfo->LatticeVectorc[1];
            hklInfo->ReciprocalLatticeVectorc[2] = hklInfo->LatticeVectorc[2];

            // Compute the direct cell parameters for completeness
            vec_prod(Temp[0], Temp[1], Temp[2], hklInfo->ReciprocalLatticeVectorb[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorb[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorb[2] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorc[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorc[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorc[2] / (2 * M_PI));
            hklInfo->VolumeOfUnitCell = 1.0 / fabs(scalar_prod(hklInfo->ReciprocalLatticeVectora[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[2] / (2.0 * M_PI), Temp[0], Temp[1], Temp[2]));

            hklInfo->LatticeVectora[0] = Temp[0] * hklInfo->VolumeOfUnitCell;
            hklInfo->LatticeVectora[1] = Temp[1] * hklInfo->VolumeOfUnitCell;
            hklInfo->LatticeVectora[2] = Temp[2] * hklInfo->VolumeOfUnitCell;

            vec_prod(Temp[0], Temp[1], Temp[2], hklInfo->ReciprocalLatticeVectorc[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorc[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorc[2] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[2] / (2 * M_PI));

            hklInfo->LatticeVectorb[0] = Temp[0] * hklInfo->VolumeOfUnitCell;
            hklInfo->LatticeVectorb[1] = Temp[1] * hklInfo->VolumeOfUnitCell;
            hklInfo->LatticeVectorb[2] = Temp[2] * hklInfo->VolumeOfUnitCell;

            vec_prod(Temp[0], Temp[1], Temp[2], hklInfo->ReciprocalLatticeVectora[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectora[2] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorb[0] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorb[1] / (2.0 * M_PI), hklInfo->ReciprocalLatticeVectorb[2] / (2 * M_PI));

            hklInfo->LatticeVectorc[0] = Temp[0] * hklInfo->VolumeOfUnitCell;
            hklInfo->LatticeVectorc[1] = Temp[1] * hklInfo->VolumeOfUnitCell;
            hklInfo->LatticeVectorc[2] = Temp[2] * hklInfo->VolumeOfUnitCell;
        }

        if (FlagMissingFile) {
            return(-1);
        }

        if (!hklInfo->ColumnOrder[0] || !hklInfo->ColumnOrder[1] || !hklInfo->ColumnOrder[2]) {
            fprintf(stderr, "Error (%s): Wrong h, k, l column definition\n", "ReadReflectionData");
            return(0);
        }

        if (!hklInfo->ColumnOrder[3] && !hklInfo->ColumnOrder[4]) {
            fprintf(stderr, "Error (%s): Wrong F, F2 column definition\n", "ReadReflectionData");
            return(0);
        }

        // Allocate hklDataStruct array
        hklData = (struct hklDataStruct*) malloc(NumberOfRows * sizeof(struct hklDataStruct));

        for (i = 0; i < NumberOfRows; i++) {
            // Get data from table
            /*hklData[i].h = Table_Index(sTable, i, hklInfo->ColumnOrder[0] - 1);*/
            hklData[i].h = Table_Index(sTable, i, 0);

            /*hklData[i].k = Table_Index(sTable, i, hklInfo->ColumnOrder[1] - 1);*/
            hklData[i].k = Table_Index(sTable, i, 1);

            /*hklData[i].l = Table_Index(sTable, i, hklInfo->ColumnOrder[2] - 1);*/
            hklData[i].l = Table_Index(sTable, i, 2);

            /*if (hklInfo->ColumnOrder[3]) {
              hklData[i].F2 = pow(Table_Index(sTable, i, hklInfo->ColumnOrder[3] - 1), 2);

              } else if (hklInfo->ColumnOrder[4]) {
              hklData[i].F2 = Table_Index(sTable, i, hklInfo->ColumnOrder[4] - 1);

              }*/

            hklData[i].F2 = Table_Index(sTable, i, 6);

            // Precompute some values
            hklData[i].Tau[0] = hklData[i].h * hklInfo->ReciprocalLatticeVectora[0] +
                hklData[i].k * hklInfo->ReciprocalLatticeVectorb[0] +
                hklData[i].l * hklInfo->ReciprocalLatticeVectorc[0];

            hklData[i].Tau[1] = hklData[i].h * hklInfo->ReciprocalLatticeVectora[1] +
                hklData[i].k * hklInfo->ReciprocalLatticeVectorb[1] +
                hklData[i].l * hklInfo->ReciprocalLatticeVectorc[1];

            hklData[i].Tau[2] = hklData[i].h * hklInfo->ReciprocalLatticeVectora[2] +
                hklData[i].k * hklInfo->ReciprocalLatticeVectorb[2] +
                hklData[i].l * hklInfo->ReciprocalLatticeVectorc[2];

            hklData[i].TauLength = sqrt(pow(hklData[i].Tau[0], 2) +
                    pow(hklData[i].Tau[1], 2) +
                    pow(hklData[i].Tau[2], 2));

            hklData[i].u1[0] = hklData[i].Tau[0] / hklData[i].TauLength;
            hklData[i].u1[1] = hklData[i].Tau[1] / hklData[i].TauLength;
            hklData[i].u1[2] = hklData[i].Tau[2] / hklData[i].TauLength;

            hklData[i].Sigma[0] = FWHM2RMS * hklInfo->Deltad_d * hklData[i].TauLength;

            // Find two arbitrary axes perpendicular to tau and each other
            normal_vec(&(b1[0]), &(b1[1]), &(b1[2]), hklData[i].u1[0], hklData[i].u1[1], hklData[i].u1[2]);
            vec_prod(b2[0], b2[1], b2[2], hklData[i].u1[0], hklData[i].u1[1], hklData[i].u1[2], b1[0], b1[1], b1[2]);

            // Find the two mosaic axes perpendicular to tau
            if (Mosaicity > 0) {
                // Use isotropic mosaic
                hklData[i].u2[0] = b1[0];
                hklData[i].u2[1] = b1[1];
                hklData[i].u2[2] = b1[2];

                hklData[i].Sigma[1] = FWHM2RMS * hklData[i].TauLength * MIN2RAD * Mosaicity;

                hklData[i].u3[0] = b2[0];
                hklData[i].u3[1] = b2[1];
                hklData[i].u3[2] = b2[2];

                hklData[i].Sigma[2] = FWHM2RMS * hklData[i].TauLength * MIN2RAD * Mosaicity;

            } else if (MosaicityA > 0 && MosaicityB > 0 && MosaicityC > 0) {
                // Use anisotropic mosaic
                fprintf(stderr, "Warning (%s): You are using an experimental feature: anistropic mosaicity. Please examine your data carefully.\n", "ReadReflectionData");

                // Compute the jacobian of (tau_v, tau_n) from rotations around the unit cell vectors
                struct hklDataStruct *CurrenthklData = &(hklData[i]);

                // Input parameters are in arc minutes
                ConvertedMosaicityA = MosaicityA * MIN2RAD;
                ConvertedMosaicityB = MosaicityB * MIN2RAD;
                ConvertedMosaicityC = MosaicityC * MIN2RAD;

                if(hklInfo->LatticeVectoraLength == 0) {
                    hklInfo->LatticeVectoraLength = sqrt(pow(hklInfo->LatticeVectora[0], 2) +
                            pow(hklInfo->LatticeVectora[1], 2) +
                            pow(hklInfo->LatticeVectora[2], 2));
                }

                if(hklInfo->LatticeVectorbLength == 0) {
                    hklInfo->LatticeVectorbLength = sqrt(pow(hklInfo->LatticeVectorb[0], 2) +
                            pow(hklInfo->LatticeVectorb[1], 2) +
                            pow(hklInfo->LatticeVectorb[2], 2));
                }

                if(hklInfo->LatticeVectorcLength == 0) {
                    hklInfo->LatticeVectorcLength = sqrt(pow(hklInfo->LatticeVectorc[0], 2) +
                            pow(hklInfo->LatticeVectorc[1], 2) +
                            pow(hklInfo->LatticeVectorc[2], 2));
                }

                CurrenthklData->u2[0] = b1[0];
                CurrenthklData->u2[1] = b1[1];
                CurrenthklData->u2[2] = b1[2];

                CurrenthklData->u3[0] = b2[0];
                CurrenthklData->u3[1] = b2[1];
                CurrenthklData->u3[2] = b2[2];

                XiA[0] = CurrenthklData->Tau[0] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[0];
                XiA[1] = CurrenthklData->Tau[1] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[1];
                XiA[2] = CurrenthklData->Tau[2] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[2];

                XiB[0] = CurrenthklData->Tau[0] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[0];
                XiB[1] = CurrenthklData->Tau[1] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[1];
                XiB[2] = CurrenthklData->Tau[2] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[2];

                XiC[0] = CurrenthklData->Tau[0] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[0];
                XiC[1] = CurrenthklData->Tau[1] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[1];
                XiC[2] = CurrenthklData->Tau[2] - (M_2_PI * hklData[i].h / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[2];

                XiALength = sqrt(pow(XiA[0], 2) +
                        pow(XiA[1], 2) +
                        pow(XiA[2], 2));

                XiBLength = sqrt(pow(XiB[0], 2) +
                        pow(XiB[1], 2) +
                        pow(XiB[2], 2));

                XiCLength = sqrt(pow(XiC[0], 2) +
                        pow(XiC[1], 2) +
                        pow(XiC[2], 2));

                vec_prod(Temp[0], Temp[1], Temp[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], CurrenthklData->u2[0], CurrenthklData->u2[1], CurrenthklData->u2[2]);
                Jacobiann[0] = XiALength / hklInfo->LatticeVectoraLength / CurrenthklData->TauLength * scalar_prod(hklInfo->ReciprocalLatticeVectora[0], hklInfo->ReciprocalLatticeVectora[1], hklInfo->ReciprocalLatticeVectora[2], Temp[0], Temp[1], Temp[2]);

                vec_prod(Temp[0], Temp[1], Temp[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], CurrenthklData->u2[0], CurrenthklData->u2[1], CurrenthklData->u2[2]);
                Jacobiann[1] = XiBLength / hklInfo->LatticeVectorbLength / CurrenthklData->TauLength * scalar_prod(hklInfo->ReciprocalLatticeVectorb[0], hklInfo->ReciprocalLatticeVectorb[1], hklInfo->ReciprocalLatticeVectorb[2], Temp[0], Temp[1], Temp[2]);

                vec_prod(Temp[0], Temp[1], Temp[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], CurrenthklData->u2[0], CurrenthklData->u2[1], CurrenthklData->u2[2]);
                Jacobiann[2] = XiCLength / hklInfo->LatticeVectorcLength / CurrenthklData->TauLength * scalar_prod(hklInfo->ReciprocalLatticeVectorc[0], hklInfo->ReciprocalLatticeVectorc[1], hklInfo->ReciprocalLatticeVectorc[2], Temp[0], Temp[1], Temp[2]);

                vec_prod(Temp[0], Temp[1], Temp[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], CurrenthklData->u3[0], CurrenthklData->u3[1], CurrenthklData->u3[2]);
                Jacobianv[0] = XiALength / hklInfo->LatticeVectoraLength / CurrenthklData->TauLength * scalar_prod(hklInfo->ReciprocalLatticeVectora[0], hklInfo->ReciprocalLatticeVectora[1], hklInfo->ReciprocalLatticeVectora[2], Temp[0], Temp[1], Temp[2]);

                vec_prod(Temp[0], Temp[1], Temp[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], CurrenthklData->u3[0], CurrenthklData->u3[1], CurrenthklData->u3[2]);
                Jacobianv[1] = XiBLength / hklInfo->LatticeVectorbLength / CurrenthklData->TauLength * scalar_prod(hklInfo->ReciprocalLatticeVectorb[0], hklInfo->ReciprocalLatticeVectorb[1], hklInfo->ReciprocalLatticeVectorb[2], Temp[0], Temp[1], Temp[2]);

                vec_prod(Temp[0], Temp[1], Temp[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], CurrenthklData->u3[0], CurrenthklData->u3[1], CurrenthklData->u3[2]);
                Jacobianv[2] = XiCLength / hklInfo->LatticeVectorcLength / CurrenthklData->TauLength * scalar_prod(hklInfo->ReciprocalLatticeVectorc[0], hklInfo->ReciprocalLatticeVectorc[1], hklInfo->ReciprocalLatticeVectorc[2], Temp[0], Temp[1], Temp[2]);

                // With the jacobian we can compute the sigmas in terms of the orthogonal vectors u2 and u3
                CurrenthklData->Sigma[1] = ConvertedMosaicityA * fabs(Jacobianv[0]) + ConvertedMosaicityB * fabs(Jacobianv[1]) + ConvertedMosaicityC * fabs(Jacobianv[2]);

                CurrenthklData->Sigma[2] = ConvertedMosaicityA * fabs(Jacobiann[0]) + ConvertedMosaicityB * fabs(Jacobiann[1]) + ConvertedMosaicityC * fabs(Jacobiann[2]);

            } else if (MosaicityAB[0] != 0 && MosaicityAB[1] != 0) {

                if ((MosaicityAB[2] == 0 && MosaicityAB[3] == 0 && MosaicityAB[4] == 0) || (MosaicityAB[5] == 0 && MosaicityAB[6] == 0 && MosaicityAB[7] == 0)) {
                  fprintf(stderr,"Error (%s): In-plane mosaics are specified but one (or both) in-plane reciprocal vector is the zero vector.\n", "ReadReflectionData");
                    return(-1);
                }

                fprintf(stderr, "Warning (%s): You are using an experimental feature: \"in-plane\" anistropic mosaicity. Please examine your data carefully.\n", "ReadReflectionData");

                struct hklDataStruct *CurrenthklData = &(hklData[i]);

                // Convert Miller indices to taus
                if (hklInfo->LatticeVectoraLength == 0) {
                    hklInfo->LatticeVectoraLength = sqrt(hklInfo->LatticeVectora[0] * hklInfo->LatticeVectora[0] + hklInfo->LatticeVectora[1] * hklInfo->LatticeVectora[1] + hklInfo->LatticeVectora[2] * hklInfo->LatticeVectora[2]);
                }

                if (hklInfo->LatticeVectorbLength == 0) {
                    hklInfo->LatticeVectorbLength = sqrt(hklInfo->LatticeVectorb[0] * hklInfo->LatticeVectorb[0] + hklInfo->LatticeVectorb[1] * hklInfo->LatticeVectorb[1] + hklInfo->LatticeVectorb[2] * hklInfo->LatticeVectorb[2]);
                }

                if (hklInfo->LatticeVectorcLength == 0) {
                    hklInfo->LatticeVectorcLength = sqrt(hklInfo->LatticeVectorc[0] * hklInfo->LatticeVectorc[0] + hklInfo->LatticeVectorc[1] * hklInfo->LatticeVectorc[1] + hklInfo->LatticeVectorc[2] * hklInfo->LatticeVectorc[2]);
                }

                TauA[0] = M_2_PI * ((MosaicityAB[2] / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[0] + (MosaicityAB[3] / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[0] + (MosaicityAB[4] / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[0]);

                TauA[1] = M_2_PI * ((MosaicityAB[2] / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[1] + (MosaicityAB[3] / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[1] + (MosaicityAB[4] / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[1]);

                TauA[2] = M_2_PI * ((MosaicityAB[2] / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[2] + (MosaicityAB[3] / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[2] + (MosaicityAB[4] / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[2]);

                TauB[0] = M_2_PI * ((MosaicityAB[5] / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[0] + (MosaicityAB[6] / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[0] + (MosaicityAB[7] / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[0]);

                TauB[1] = M_2_PI * ((MosaicityAB[5] / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[1] + (MosaicityAB[6] / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[1] + (MosaicityAB[7] / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[1]);

                TauB[2] = M_2_PI * ((MosaicityAB[5] / hklInfo->LatticeVectoraLength) * hklInfo->ReciprocalLatticeVectora[2] + (MosaicityAB[6] / hklInfo->LatticeVectorbLength) * hklInfo->ReciprocalLatticeVectorb[2] + (MosaicityAB[7] / hklInfo->LatticeVectorcLength) * hklInfo->ReciprocalLatticeVectorc[2]);

                // Check determinants to see how we should compute the linear combination of a and b (to match c)
                if ((Determinant = TauA[0] * TauB[1] - TauA[1] * TauB[0]) != 0){
                    c1 = (CurrenthklData->Tau[0] * TauB[1] - CurrenthklData->Tau[1] * TauB[0]) / Determinant;
                    c2 = (TauA[0] * CurrenthklData->Tau[1] - TauA[1] * CurrenthklData->Tau[0]) / Determinant;

                }else if ((Determinant = TauA[1] * TauB[2] - TauA[2] * TauB[1]) != 0){
                    c1 = (CurrenthklData->Tau[1] * TauB[2] - CurrenthklData->Tau[2] * TauB[1]) / Determinant;
                    c2 = (TauA[1] * CurrenthklData->Tau[2] - TauA[2] * CurrenthklData->Tau[1]) / Determinant;

                }else if ((Determinant = TauA[0] * TauB[2] - TauA[2] * TauB[0]) != 0){
                    c1 = (CurrenthklData->Tau[0] * TauB[2] - CurrenthklData->Tau[2] * TauB[0]) / Determinant;
                    c2 = (TauA[0] * CurrenthklData->Tau[2] - TauA[2] * CurrenthklData->Tau[0]) / Determinant;
                }

                if ((c1 == 0) && (c2 == 0)) {
                  fprintf(stderr, "WARNING (%s): Reflection tau[i] = (%g, %g, %g) has no component in defined mosaic plane.\n", "ReadReflectionData", CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2]);
                }

                // Compute linear combination => sig_tau_i = | c1*sig_tau_a + c2*sig_tau_b |  - also add in the minute to radian scaling factor
                SigmaTauC = MIN2RAD * sqrt(pow(c1 * MosaicityAB[0], 2) +
                        pow(c2 * MosaicityAB[1], 2));

                CurrenthklData->u2[0] = b1[0];
                CurrenthklData->u2[1] = b1[1];
                CurrenthklData->u2[2] = b1[2];

                CurrenthklData->u3[0] = b2[0];
                CurrenthklData->u3[1] = b2[1];
                CurrenthklData->u3[2] = b2[2];

                // So now let's compute the rotation around planenormal TauA X TauB
                // g_bar (unit normal of rotation plane) = TauA X TauB / norm(TauA X TauB)
                vec_prod(Temp[0], Temp[1], Temp[2], TauA[0], TauA[1], TauA[2], TauB[0], TauB[1], TauB[2]);
                vec_prod(em[0], em[1], em[2], CurrenthklData->Tau[0], CurrenthklData->Tau[1], CurrenthklData->Tau[2], Temp[0], Temp[1], Temp[2]);

                NORM(em[0], em[1], em[2]);

                CurrenthklData->Sigma[1] = CurrenthklData->TauLength * SigmaTauC * fabs(scalar_prod(em[0], em[1], em[2], CurrenthklData->u2[0], CurrenthklData->u2[1], CurrenthklData->u2[2]));
                CurrenthklData->Sigma[2] = CurrenthklData->TauLength * SigmaTauC * fabs(scalar_prod(em[0], em[1], em[2], CurrenthklData->u3[0], CurrenthklData->u3[1], CurrenthklData->u3[2]));

                //Protect against collapsing gaussians - these seem to be sensible values
                if (CurrenthklData->Sigma[1] < 1e-5) {
                    CurrenthklData->Sigma[1] = 1e-5;
                }

                if (CurrenthklData->Sigma[2] < 1e-5) {
                    CurrenthklData->Sigma[2] = 1e-5;
                }

            } else {
              fprintf(stderr, "ERROR (%s): Either mosaic or (mosaic_a, mosaic_b, mosaic_c) must be given and be > 0.\n", "ReadReflectionData");
              return(-1);
            }

            hklData[i].TotalSigma = hklData[i].Sigma[0] *
                hklData[i].Sigma[1] *
                hklData[i].Sigma[2];

            hklData[i].m[0] = 1.0 / (2.0 * pow(hklData[i].Sigma[0], 2));
            hklData[i].m[1] = 1.0 / (2.0 * pow(hklData[i].Sigma[1], 2));
            hklData[i].m[2] = 1.0 / (2.0 * pow(hklData[i].Sigma[2], 2));

            // Set Gauss cutoff to 5 times the maximal sigma
            if (hklData[i].Sigma[0] > hklData[i].Sigma[1]) {

                if(hklData[i].Sigma[0] > hklData[i].Sigma[2]) {
                    hklData[i].GaussianCutoff = 5.0 * hklData[i].Sigma[0];
                } else {
                    hklData[i].GaussianCutoff = 5.0 * hklData[i].Sigma[2];
                }
            } else {
                if(hklData[i].Sigma[1] > hklData[i].Sigma[2]) {
                    hklData[i].GaussianCutoff = 5.0 * hklData[i].Sigma[1];
                } else {
                    hklData[i].GaussianCutoff = 5.0 * hklData[i].Sigma[2];
                }
            }
        }

        Table_Free(&sTable);

        hklInfo->hklData = hklData;
        hklInfo->NumberOfReflections = i;

        return(i);
    }

    // Struct for description of absorption
    int ReadAbsorbtionData(char *AbsorptionFile, struct AbsorbtionStruct *AbsorbtionInfo) {
        // Declarations
        int j;
        int Status;
        char **Parsing;

        // Construct table
        if (AbsorptionFile && strlen(AbsorptionFile) && strcmp(AbsorptionFile, "NULL")) {

            if ((Status = Table_Read(&(AbsorbtionInfo->Table), AbsorptionFile, 0)) == -1) {
              fprintf(stderr, "Error (%s): Could not parse file %s\n", "ReadAbsorptionData", AbsorptionFile);
                exit(-1);
            }

            Parsing = Table_ParseHeader(AbsorbtionInfo->Table.header, "Z", "A[r]", "rho", NULL);

            if (AbsorbtionInfo->Table.columns == 3) {
                AbsorbtionInfo->muc = 1.0;
            } else {
                AbsorbtionInfo->muc = 5.0;
            }

            Table_Stat(&(AbsorbtionInfo->Table));

            return 1;
        } else {
            // Create empty table
            Table_Init(&(AbsorbtionInfo->Table), 2, 2);

            AbsorbtionInfo->Table.data[0] = 0.0;
            AbsorbtionInfo->Table.data[1] = 0.0;
            AbsorbtionInfo->Table.data[2] = FLT_MAX;
            AbsorbtionInfo->Table.data[3] = 0.0;

            fprintf(stderr, "Warning (%s): MaterialDatafile file (%s) not found. Absorption set to 0.\n","ReadAbsorptionData", AbsorptionFile);

            return 1;
        }
    }

    // Function used to get the dimensions of the voxels
    int GetVoxelDimensions(t_Table *TableOfMap, int *NumberOfVoxelsx, int *NumberOfVoxelsy, int *NumberOfVoxelsz) {
        // Declaration
        int xValue=1;
        int yValue=1;
        int zValue=1;
        // Get dimensions of voxels in from table header
        char **parsing;
        parsing=Table_ParseHeader(TableOfMap->header,"xdim","XDIM","XDim","ydim","YDIM","YDim","zdim","ZDIM","ZDim", "Dimensions:",NULL);
        if(parsing[0]) xValue=strtol(parsing[0],NULL,0);
        if(parsing[1]) xValue=strtol(parsing[1],NULL,0);
        if(parsing[2]) xValue=strtol(parsing[2],NULL,0);
        if(parsing[3]) yValue=strtol(parsing[3],NULL,0);
        if(parsing[4]) yValue=strtol(parsing[4],NULL,0);
        if(parsing[5]) yValue=strtol(parsing[5],NULL,0);
        if(parsing[6]) zValue=strtol(parsing[6],NULL,0);
        if(parsing[7]) zValue=strtol(parsing[7],NULL,0);
        if(parsing[8]) zValue=strtol(parsing[8],NULL,0);
        if(parsing[9]) sscanf(parsing[9],"%d x %d x %d",&xValue, &yValue, &zValue);

        if (xValue*yValue*zValue==TableOfMap->rows){
            *NumberOfVoxelsx = xValue;
            *NumberOfVoxelsy = yValue;
            *NumberOfVoxelsz = zValue;
            return 0;
        } else {
            return -1;
        }
    }
%}

DECLARE
%{
    // Info on polycrystal
    struct hklStruct *PolyInfo;
    struct hklStruct hklInfo;
    struct AbsorbtionStruct AbsorbtionInfo;

    t_Table *TableOfMap;
    t_Table *TableOfOrientations;

    // Dimensions of voxels
    double Voxelxwidth;
    double Voxelyheight;
    double Voxelzdepth;

    int NumberOfVoxelsx;
    int NumberOfVoxelsy;
    int NumberOfVoxelsz;
%}


INITIALIZE
%{
    // Declarations
    int i;

    Coords aOriginal;
    Coords bOriginal;
    Coords cOriginal;

    Coords aCurrent;
    Coords bCurrent;
    Coords cCurrent;

    Rotation CurrentRotationMatrix;

    // In-plane anisotropy
    double *MosaicityAB;

    // Allocation of tables
    TableOfMap = malloc(sizeof(t_Table));
    if ( (i=Table_Read(TableOfMap, MapFile, 0))==-1){
        fprintf(stderr,"Error (%s): Unable to read map file \'%s\'. Aborting.\n",NAME_CURRENT_COMP,MapFile);
        exit(-1);
    }
    TableOfOrientations = malloc(sizeof(t_Table));

    if ( (i=Table_Read(TableOfOrientations, OrientationsFile, 0))==-1){
        fprintf(stderr,"Error (%s): Unable to read orientation file \'%s\'. Aborting.\n",NAME_CURRENT_COMP,OrientationsFile);
        exit(-1);
    }
    PolyInfo = calloc(TableOfOrientations->rows, sizeof(struct hklStruct));

    // Compute dimensions of voxels
    if (GetVoxelDimensions(TableOfMap, &NumberOfVoxelsx, &NumberOfVoxelsy, &NumberOfVoxelsz) == -1) {
      fprintf(stderr, "Warning (%s): An error occured when assigning the dimensions of the polycrystal. Is the header appropriately formatted?\n", NAME_CURRENT_COMP);
    }
    Voxelxwidth=xwidth/NumberOfVoxelsx;
    Voxelyheight=yheight/NumberOfVoxelsy;
    Voxelzdepth=zdepth/NumberOfVoxelsz;

    // Coordinate calculations
    aOriginal = coords_set(ax, ay, az);
    bOriginal = coords_set(bx, by, bz);
    cOriginal = coords_set(cx, cy, cz);

    // Set up default hklInfo
    hklInfo.LatticeVectora[0] = ax;
    hklInfo.LatticeVectora[1] = ay;
    hklInfo.LatticeVectora[2] = az;

    hklInfo.LatticeVectorb[0] = bx;
    hklInfo.LatticeVectorb[1] = by;
    hklInfo.LatticeVectorb[2] = bz;

    hklInfo.LatticeVectorc[0] = cx;
    hklInfo.LatticeVectorc[1] = cy;
    hklInfo.LatticeVectorc[2] = cz;

    hklInfo.Deltad_d        = DeltadOverd;
    hklInfo.SigmaAbs        = SigmaAbsorbtion;
    hklInfo.SigmaInc        = SigmaIncoherent;

    // Default format: h, k, l, F, F2
    hklInfo.ColumnOrder[0] = 1;
    hklInfo.ColumnOrder[1] = 2;
    hklInfo.ColumnOrder[2] = 3;
    hklInfo.ColumnOrder[3] = 0;
    hklInfo.ColumnOrder[4] = 7;

    // Read in structure factors and absorption info
    ReadReflectionData(ReflectionsDatafile, &hklInfo, Mosaicity, MosaicityA, MosaicityB, MosaicityC, MosaicityAB);
    ReadAbsorbtionData(MaterialDatafile, &AbsorbtionInfo);

    // Print properties
    if(verbose){
      fprintf(stderr, "INFO (%s): %d reflections found in %s.\n", NAME_CURRENT_COMP, hklInfo.NumberOfReflections, ReflectionsDatafile);
      fprintf(stderr, "INFO (%s): %d different orientations found in %s.\n", NAME_CURRENT_COMP, (int) TableOfOrientations->rows, OrientationsFile);
      fprintf(stderr, "INFO (%s): %d voxels organised in a %d by %d by %d-grid found in %s.\n", NAME_CURRENT_COMP, (int) TableOfMap->rows, NumberOfVoxelsx, NumberOfVoxelsy, NumberOfVoxelsz, MapFile);
      fprintf(stderr, "INFO (%s): The voxels of the polycrystals have dimensions of %g m by %g m by %g m.\n", NAME_CURRENT_COMP, Voxelxwidth, Voxelyheight, Voxelzdepth);
      fprintf(stderr, "INFO (%s): Volume of unit cell is %g AA^3.\n", NAME_CURRENT_COMP, hklInfo.VolumeOfUnitCell);
    }

    // Loop over all orientations
    for (i = 0; i < TableOfOrientations->rows; ++i) {
        PolyInfo[i] = hklInfo;
        PolyInfo[i].Recip = 0;

        // Apply rotation to crystal vectors
        memcpy(*CurrentRotationMatrix, &(TableOfOrientations->data[i * 9]), sizeof(CurrentRotationMatrix[0][0]) * 9);

        aCurrent = rot_apply(CurrentRotationMatrix, aOriginal);
        bCurrent = rot_apply(CurrentRotationMatrix, bOriginal);
        cCurrent = rot_apply(CurrentRotationMatrix, cOriginal);

        // Set the crystal parameters to the rotated ones
        coords_get(aCurrent, &(PolyInfo[i].LatticeVectora[0]), &(PolyInfo[i].LatticeVectora[1]), &(PolyInfo[i].LatticeVectora[2]));
        coords_get(bCurrent, &(PolyInfo[i].LatticeVectorb[0]), &(PolyInfo[i].LatticeVectorb[1]), &(PolyInfo[i].LatticeVectorb[2]));
        coords_get(cCurrent, &(PolyInfo[i].LatticeVectorc[0]), &(PolyInfo[i].LatticeVectorc[1]), &(PolyInfo[i].LatticeVectorc[2]));

        // Read reflections for the given orientation
        ReadReflectionData(ReflectionsDatafile, &(PolyInfo[i]), Mosaicity, MosaicityA, MosaicityB, MosaicityC, MosaicityAB);
    }
%}


TRACE
%{
    // Dummy integers
    int i;
    int j;

    // Sample propagation
    double l1 = 0.0;
    double l2 = 0.0;
    double l;

    int Intersect = 0;
    int IntersectVoxel = 1;
    int BackgroundVoxel;

    // Structs for hkl-data
    struct hklDataStruct *CurrenthklData;

    // List of reflections close to Ewald sphere
    struct TauDataStruct CurrentTauData[MXPX_REFL_SLIST_SIZE];
    int TauCount;

    // Number of scattering events
    int NumberOfScatteringEvents;

    // Wavewectors
    double ki[3];
    double kiLength;

    double kf[3];
    double kfLength;

    // The vector ki - tau
    double Rho[3];
    double RhoLength;

    // Properties of crystal
    double VolumeOfUnitCell;

    // Vectors spanning the Ewald sphere tangent plane
    double b1[3];
    double b2[3];

    // Matrix describing the 2D-Gaussian
    double N11;
    double N12;
    double N22;
    double DeterminantN;

    double NInverse11;
    double NInverse12;
    double NInverse22;

    // L = 1/2 * N^-1 (Cholesky decomposition)
    double L11;
    double L12;
    double L22;
    double DeterminantL;

    // Center of 2D-Gaussian
    double GaussCenterx;
    double GaussCentery;

    // Offset of 2D-Gaussian
    double Alpha;

    // Product of B * D * Origin
    double Productx;
    double Producty;

    // Coherent reflectivity
    double TotalReflectivity;

    // Dummy variables used to select the final wavevector from the 2D-Gaussian
    double z1;
    double z2;
    double y1;
    double y2;

    // Variables used in search for tau
    double r;
    double Sum;
    double TauMax;

    // Transmission, absorption and incoherence
    double AbsorbtionCrosssection;
    double AbsorbtionScatteringLength;

    double IncoherentCrosssection;
    double IncoherentScatteringLength;

    double CoherentCrosssection;
    double CoherentScatteringLength;

    double TotalCrosssection;
    double TotalScatteringLength;

    double CrosssectionFactor;
    double AbsorbtionMu;

    // Monte Carlo-properties
    double CalculatedProbabilityOfTransmission;
    double MCTransmission;
    double MCInteract;

    // Indices of current voxel
    int VoxelIndexx;
    int VoxelIndexy;
    int VoxelIndexz;

    int PreviousVoxelIndexx = -10000;
    int PreviousVoxelIndexy = -10000;
    int PreviousVoxelIndexz = -10000;

    double VoxelCenterx;
    double VoxelCentery;
    double VoxelCenterz;

    int OrientationIndex;

    // Compute intersection trajectory
    Intersect = box_intersect(&l1, &l2, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);

    if (l2 < 0) {
        Intersect = 0;
    }

    if (l1 > 0) {
        PROP_DL(l1);
    }

    NumberOfScatteringEvents = 0;

    // Begin computating if ray intersects crystal hull
    while (Intersect) {

        // Figure out which voxel the ray hit (the small added constant prevents errors on boundaries of the crystal hull
        VoxelIndexx = floor((x + xwidth  / 2.0) / xwidth  * NumberOfVoxelsx + 1e-10);
        VoxelIndexy = floor((y + yheight / 2.0) / yheight * NumberOfVoxelsy + 1e-10);
        VoxelIndexz = floor((z + zdepth  / 2.0) / zdepth  * NumberOfVoxelsz + 1e-10);

        if (VoxelIndexx >= NumberOfVoxelsx || VoxelIndexx < 0 ||
                VoxelIndexy >= NumberOfVoxelsy || VoxelIndexy < 0 ||
                VoxelIndexz >= NumberOfVoxelsz || VoxelIndexz < 0) {
            Intersect = 0;

            break;
        }

        // Check, if ray is stuck
        if (PreviousVoxelIndexx == VoxelIndexx &&
                PreviousVoxelIndexy == VoxelIndexy &&
                PreviousVoxelIndexz == VoxelIndexz) {

            ABSORB;
        }

        // Determine coordinates of voxel center
        VoxelCenterx = (VoxelIndexx - (NumberOfVoxelsx - 1) / 2.0) * Voxelxwidth;
        VoxelCentery = (VoxelIndexy - (NumberOfVoxelsy - 1) / 2.0) * Voxelyheight;
        VoxelCenterz = (VoxelIndexz - (NumberOfVoxelsz - 1) / 2.0) * Voxelzdepth;

        // Get hklInfo struct from table - orientation index is in the 4th column of TableOfMap (-1 since array is zero-indexed)
        OrientationIndex = Table_Index(*TableOfMap, VoxelIndexx * (NumberOfVoxelsy * NumberOfVoxelsz) + VoxelIndexy * NumberOfVoxelsz + VoxelIndexz, 3) - 1;
        VolumeOfUnitCell = PolyInfo[OrientationIndex].VolumeOfUnitCell;

        // Check, if the ray is a void in the crystal
        if (OrientationIndex != -1) {
            BackgroundVoxel = 0;

            // Prepare voxel loop
            kiLength = sqrt(pow(kx, 2) +
                    pow(ky, 2) +
                    pow(kz, 2));

            CrosssectionFactor = pow(2.0 * M_PI, 5.0 / 2.0) / (VolumeOfUnitCell * pow(kiLength, 2));

            // Absorption cross-section
            AbsorbtionMu               = Table_Value(AbsorbtionInfo.Table, kiLength * K2E, AbsorbtionInfo.muc);
            AbsorbtionCrosssection     = /*PolyInfo[OrientationIndex].*/SigmaAbsorbtion * AbsorbtionMu;
            AbsorbtionScatteringLength = AbsorbtionCrosssection / VolumeOfUnitCell;

            // Incoherent scattering
            IncoherentCrosssection     = /*PolyInfo[OrientationIndex].*/SigmaIncoherent;
            IncoherentScatteringLength = IncoherentCrosssection / VolumeOfUnitCell;

            // Get info from PolyInfo-struct
            CurrenthklData = PolyInfo[OrientationIndex].hklData;
        } else {
            BackgroundVoxel = 1;
        }

        // Begin loop over multiple scattering events
        IntersectVoxel = box_intersect(&l1, &l2, x - VoxelCenterx, y - VoxelCentery, z - VoxelCenterz, kx, ky, kz, Voxelxwidth, Voxelyheight, Voxelzdepth);

        while (IntersectVoxel) {

            // Remember current voxel
            PreviousVoxelIndexx = VoxelIndexx;
            PreviousVoxelIndexy = VoxelIndexy;
            PreviousVoxelIndexz = VoxelIndexz;

            // Check, if the x-ray is leaving the sample unexpectedly
            if (!IntersectVoxel || l2 < -1e-9 || l1 > 1e-9) {
                fprintf(stderr,	"%s: Warning: Ray number %d has unexpectedly left the crystal.\n l1 = %g l2 = %g x = %g y = %g z = %g kx = %g ky = %g kz = %g.\n", NAME_CURRENT_COMP, (int) mcget_run_num(), l1, l2, x, y, z, kx, ky, kz);
                break;
            }

            if (BackgroundVoxel) {
                PROP_DL(l2);
                break;
            }

            // Copy incoming wave vector ki
            ki[0] = kx;
            ki[1] = ky;
            ki[2] = kz;

            // Calculate Intersection of Ewald sphere with reciprocal lattice points
            CoherentCrosssection = 0.0;
            TotalReflectivity    = 0.0;
            TauMax               = 2.0 * kiLength / (1.0 - 5.0 * DeltadOverd);

            j = 0;

            for (i = 0; i < PolyInfo[OrientationIndex].NumberOfReflections; ++i) {
                // End loop if the largest relevant length of tau has been reached
                if (TauMax < CurrenthklData[i].TauLength) {
                    break;
                }

                // Check, if this reciprocal lattice point is close enough to the Ewald sphere to make scattering possible
                Rho[0] = ki[0] - CurrenthklData[i].Tau[0];
                Rho[1] = ki[1] - CurrenthklData[i].Tau[1];
                Rho[2] = ki[2] - CurrenthklData[i].Tau[2];

                RhoLength = sqrt(pow(Rho[0], 2) + pow(Rho[1], 2) + pow(Rho[2], 2));

                // Check if scattering is possible (cutoff of Gaussian tails)
                if (fabs(RhoLength - kiLength) < CurrenthklData[i].GaussianCutoff) {

                    // Store reflection
                    CurrentTauData[j].Index = i;

                    // Get ki vector in local coordinates
                    CurrentTauData[j].ki[0] = ki[0] * CurrenthklData[i].u1[0] + ki[1] * CurrenthklData[i].u1[1] + ki[2] * CurrenthklData[i].u1[2];
                    CurrentTauData[j].ki[1] = ki[0] * CurrenthklData[i].u2[0] + ki[1] * CurrenthklData[i].u2[1] + ki[2] * CurrenthklData[i].u2[2];
                    CurrentTauData[j].ki[2] = ki[0] * CurrenthklData[i].u3[0] + ki[1] * CurrenthklData[i].u3[1] + ki[2] * CurrenthklData[i].u3[2];

                    CurrentTauData[j].Rho[0] = CurrentTauData[j].ki[0] - CurrenthklData[i].TauLength;
                    CurrentTauData[j].Rho[1] = CurrentTauData[j].ki[1];
                    CurrentTauData[j].Rho[2] = CurrentTauData[j].ki[2];

                    CurrentTauData[j].RhoLength = RhoLength;

                    // Compute the tangent plane of the Ewald sphere
                    CurrentTauData[j].NormalVector[0] = CurrentTauData[j].Rho[0] / CurrentTauData[j].RhoLength;
                    CurrentTauData[j].NormalVector[1] = CurrentTauData[j].Rho[1] / CurrentTauData[j].RhoLength;
                    CurrentTauData[j].NormalVector[2] = CurrentTauData[j].Rho[2] / CurrentTauData[j].RhoLength;

                    CurrentTauData[j].Origin[0] = (kiLength - CurrentTauData[j].RhoLength) * CurrentTauData[j].NormalVector[0];
                    CurrentTauData[j].Origin[1] = (kiLength - CurrentTauData[j].RhoLength) * CurrentTauData[j].NormalVector[1];
                    CurrentTauData[j].Origin[2] = (kiLength - CurrentTauData[j].RhoLength) * CurrentTauData[j].NormalVector[2];

                    // Compute unit vectors b1 and b2 that span the tangent plane
                    normal_vec(&(b1[0]), &(b1[1]), &(b1[2]), CurrentTauData[j].NormalVector[0], CurrentTauData[j].NormalVector[1], CurrentTauData[j].NormalVector[2]);
                    vec_prod(b2[0], b2[1], b2[2], CurrentTauData[j].NormalVector[0], CurrentTauData[j].NormalVector[1], CurrentTauData[j].NormalVector[2], b1[0], b1[1], b1[2]);

                    CurrentTauData[j].b1[0] = b1[0];
                    CurrentTauData[j].b1[1] = b1[1];
                    CurrentTauData[j].b1[2] = b1[2];

                    CurrentTauData[j].b2[0] = b2[0];
                    CurrentTauData[j].b2[1] = b2[1];
                    CurrentTauData[j].b2[2] = b2[2];

                    // Compute the 2D projection of the 3D Gauss of the reflection - the symmetric 2x2 matrix N describing the 2D gauss
                    N11 = CurrenthklData[i].m[0] * pow(b1[0], 2) + CurrenthklData[i].m[1] * pow(b1[1], 2) + CurrenthklData[i].m[2] * pow(b1[2], 2);
                    N12 = CurrenthklData[i].m[0] * b1[0] * b2[0] + CurrenthklData[i].m[1] * b1[1] * b2[1] + CurrenthklData[i].m[2] * b1[2] * b2[2];
                    N22 = CurrenthklData[i].m[0] * pow(b2[0], 2) + CurrenthklData[i].m[1] * pow(b2[1], 2) + CurrenthklData[i].m[2] * pow(b2[2], 2);

                    // The (symmetric) inverse matrix of N
                    DeterminantN = N11 * N22 - pow(N12, 2);

                    NInverse11 =  N22 / DeterminantN;
                    NInverse12 = -N12 / DeterminantN;
                    NInverse22 =  N11 / DeterminantN;

                    // The Cholesky decomposition of 1/2 * NInverse (lower triangular L)
                    L11 = sqrt(NInverse11 / 2.0);
                    L12 = NInverse12 / (2.0 * L11);
                    L22 = sqrt(NInverse22 / 2.0 - L12 * L12);

                    CurrentTauData[j].L11 = L11;
                    CurrentTauData[j].L12 = L12;
                    CurrentTauData[j].L22 = L22;

                    DeterminantL = L11 * L22;

                    CurrentTauData[j].DeterminantL = DeterminantL;

                    // Compute product
                    Productx = b1[0] * CurrenthklData[i].m[0] * CurrentTauData[j].Origin[0] + b1[1] * CurrenthklData[i].m[1] * CurrentTauData[j].Origin[1] + b1[2] * CurrenthklData[i].m[2] * CurrentTauData[j].Origin[2];
                    Producty = b2[0] * CurrenthklData[i].m[0] * CurrentTauData[j].Origin[0] + b2[1] * CurrenthklData[i].m[1] * CurrentTauData[j].Origin[1] + b2[2] * CurrenthklData[i].m[2] * CurrentTauData[j].Origin[2];

                    // Center of 2D Gauss in plane coordinates
                    GaussCenterx = -Productx * NInverse11 - Producty * NInverse12;
                    GaussCentery = -Productx * NInverse12 - Producty * NInverse22;

                    CurrentTauData[j].GaussCenterx = GaussCenterx;
                    CurrentTauData[j].GaussCentery = GaussCentery;

                    // Factor Alpha for the distance of the 2D Gauss from the origin
                    Alpha = CurrenthklData[i].m[0] * pow(CurrentTauData[j].Origin[0], 2) +
                        CurrenthklData[i].m[1] * pow(CurrentTauData[j].Origin[1], 2) +
                        CurrenthklData[i].m[2] * pow(CurrentTauData[j].Origin[2], 2) -
                        (pow(GaussCenterx, 2) * N11 +
                         pow(GaussCentery, 2) * N22 +
                         2.0 * GaussCenterx * GaussCentery * N12);

                    CurrentTauData[j].Reflectivity = CrosssectionFactor * DeterminantL * exp(-Alpha) / CurrenthklData[i].TotalSigma;
                    TotalReflectivity += CurrentTauData[j].Reflectivity;

                    CurrentTauData[j].Crosssection = CurrentTauData[j].Reflectivity * CurrenthklData[i].F2;
                    CoherentCrosssection += CurrentTauData[j].Crosssection;

                    ++j;
                }
            }

            TauCount = j;
            
	    if (TauCount == 0) {
                IntersectVoxel = 0;
                PROP_DL(l2);
                break;
            }

            // Probabilities of the different possible interactions
            TotalCrosssection        = AbsorbtionCrosssection + IncoherentCrosssection + CoherentCrosssection;
            CoherentScatteringLength = CoherentCrosssection / VolumeOfUnitCell;
            TotalScatteringLength    = TotalCrosssection / VolumeOfUnitCell;

            // Calculate and account for transmission
            CalculatedProbabilityOfTransmission = exp(-TotalScatteringLength * l2);

            if (!NumberOfScatteringEvents && ProbabilityOfTransmission >= 0.0 && ProbabilityOfTransmission <= 1.0) {
                MCTransmission = ProbabilityOfTransmission;
            } else {
                MCTransmission = CalculatedProbabilityOfTransmission;
            }

            MCInteract = 1.0 - MCTransmission;

            if (MCTransmission > 0.0 && (MCTransmission > 1.0 || rand01() < MCTransmission)) {
                p *= CalculatedProbabilityOfTransmission / MCTransmission;
                SCATTER;

                IntersectVoxel = 0;
                PROP_DL(l2);

                break;
            }

            if (TotalScatteringLength < 0){
                ABSORB;
            }

            if (MCInteract < 0) {
                IntersectVoxel = 0;
                PROP_DL(l2);
                break;
            }

            // Scatter the ray
            if (!NumberOfScatteringEvents) {
                p *= fabs(1.0 - CalculatedProbabilityOfTransmission) / MCInteract;
            }

            // Calculate, where the ray is scattered - use linear sampling for weak scatterers
            if (TotalScatteringLength * l2 < 1e-6) {
                l = rand0max(l2);
            } else {
                l = -log(1.0 - rand0max(1.0 - exp(-TotalScatteringLength * l2))) / TotalScatteringLength;
            }

            // Propagate the ray to this point
            PROP_DL(l);
            ++NumberOfScatteringEvents;

            // Account for absorption
            p *= (CoherentScatteringLength + IncoherentScatteringLength) / TotalScatteringLength;

            // Randomly select between coherent and incoherent scattering
            if(rand0max(CoherentScatteringLength + IncoherentScatteringLength) < IncoherentScatteringLength) {
                randvec_target_circle(&ki[0], &ki[1], &ki[2], NULL, kx, ky, kz, 0);
                kx = ki[0]; ky = ki[1]; kz = ki[2];
            } else {
                if (TotalReflectivity < 0) {
                    ABSORB;
                }

                // Decide, which reflection will interact with the ray
                r = rand0max(TotalReflectivity);
                Sum = 0;

                for (j = 0; j < TauCount; ++j) {
                    Sum += CurrentTauData[j].Reflectivity;

                    if (Sum > r) {
                        break;
                    }
                }
                // If no suitable reflection is found - use the last one in the list (this should not happen in practice)
                if (j >= TauCount) {
                    fprintf(stderr, "%s: Error: Illegal tau search: r = %g, Sum = %g.\n", NAME_CURRENT_COMP, r, Sum);
                    j = TauCount - 1;
                }

                i = CurrentTauData[j].Index;

                // Pick scattered wavevector kf from 2D Gauss distribution
                z1 = randnorm();
                z2 = randnorm();

                y1 = CurrentTauData[j].L11 * z1 + CurrentTauData[j].GaussCenterx;
                y2 = CurrentTauData[j].L12 * z1 + CurrentTauData[j].L22 * z2 + CurrentTauData[j].GaussCentery;

                kf[0] = CurrentTauData[j].Rho[0] + CurrentTauData[j].Origin[0] + CurrentTauData[j].b1[0] * y1 + CurrentTauData[j].b2[0] * y2;
                kf[1] = CurrentTauData[j].Rho[1] + CurrentTauData[j].Origin[1] + CurrentTauData[j].b1[1] * y1 + CurrentTauData[j].b2[1] * y2;
                kf[2] = CurrentTauData[j].Rho[2] + CurrentTauData[j].Origin[2] + CurrentTauData[j].b1[2] * y1 + CurrentTauData[j].b2[2] * y2;

                // Normalize kf to length of ki to account for plane approximation of the Ewald sphere
                kfLength = sqrt(kf[0]*kf[0] + kf[1]*kf[1] + kf[2]*kf[2]);
                kf[0] *= kiLength / kfLength;
                kf[1] *= kiLength / kfLength;
                kf[2] *= kiLength / kfLength;

                // Adjust weight
                p *= CurrentTauData[j].Crosssection * TotalReflectivity / (CoherentCrosssection * CurrentTauData[j].Reflectivity);

                // Adjust direction of ray
                kx = CurrenthklData[i].u1[0] * kf[0] + CurrenthklData[i].u2[0] * kf[1] + CurrenthklData[i].u3[0] * kf[2];

		ky = CurrenthklData[i].u1[1] * kf[0] + CurrenthklData[i].u2[1] * kf[1] + CurrenthklData[i].u3[1] * kf[2];

                kz = CurrenthklData[i].u1[2] * kf[0] + CurrenthklData[i].u2[2] * kf[1] + CurrenthklData[i].u3[2] * kf[2];
            }

            SCATTER;

            /* Calculate new trajectory (the 1.0001 has been added to make sure that the ray leaves the current voxel*/
            IntersectVoxel = box_intersect(&l1, &l2, x - VoxelCenterx, y - VoxelCentery, z - VoxelCenterz, kx, ky, kz, 1.0001 * Voxelxwidth, 1.0001 * Voxelyheight, 1.0001 * Voxelzdepth);

            /* End loop if maximum numer of scattering events has been reached */
            if (MaxNumberOfReflections && NumberOfScatteringEvents >= MaxNumberOfReflections) {
                box_intersect(&l1, &l2, x - VoxelCenterx, y - VoxelCentery, z - VoxelCenterz, kx, ky, kz, xwidth, yheight, zdepth);

                IntersectVoxel = 0;
                Intersect = 0;
                PROP_DL(l2);

                break;
            }
        }
    }

    // Free appropriate pointers
    //free(CurrenthklData);
    //free(CurrentTauData);
%}


FINALLY
%{
    // Free remaining pointers
    //free(PolyInfo);
    Table_Free(TableOfMap);
    Table_Free(TableOfOrientations);
%}


MCDISPLAY
%{
    int i;
    int j;
    int k;

    double xmin;
    double xmax;
    double ymin;
    double ymax;
    double zmin;
    double zmax;

    for (i = 0; i < NumberOfVoxelsx; ++i) {
        xmin = -0.5 * xwidth + Voxelxwidth * i;
        xmax = -0.5 * xwidth + Voxelxwidth * (i + 1);

        for (j = 0; j < NumberOfVoxelsy; ++j) {
            ymin = -0.5 * yheight + Voxelyheight * j;
            ymax = -0.5 * yheight + Voxelyheight * (j + 1);

            for (k = 0; k < NumberOfVoxelsz; ++k) {
                zmin = -0.5 * zdepth + Voxelzdepth * k;
                zmax = -0.5 * zdepth + Voxelzdepth * (k + 1);

                line(xmin, ymin, zmin, xmax, ymin, zmin);
                line(xmin, ymin, zmin, xmin, ymax, zmin);
                line(xmax, ymin, zmin, xmax, ymax, zmin);
                line(xmin, ymax, zmin, xmax, ymax, zmin);

                line(xmin, ymin, zmin, xmin, ymin, zmax);
                line(xmax, ymin, zmin, xmax, ymin, zmax);
                line(xmin, ymax, zmin, xmin, ymax, zmax);
                line(xmax, ymax, zmin, xmax, ymax, zmax);

                line(xmin, ymin, zmax, xmax, ymin, zmax);
                line(xmin, ymin, zmax, xmin, ymax, zmax);
                line(xmax, ymin, zmax, xmax, ymax, zmax);
                line(xmin, ymax, zmax, xmax, ymax, zmax);
            }
        }
    }
%}


END