1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Saxs_spheres
*
* %Identification
* Written by: E. B. Knudsen, P. Willendrup, K. Lefmann, L. Arleth
* Date: 28.10.2010
* Origin: DTU Fysik
* Release: McXtrace 1.1
*
* Sample for Small Angle X-ray Scattering - hard spheres in thin solution, mono disperse.
*
* %Description
* Sample for use in a SAXS instrument, models hard, monodisperse spheres in thin solution.
* The shape of the sample may be a filled box with dimensions
* xwidth, yheight, zdepth, a cylinder with dimensions radius and yheight,
* a filled sphere with radius R.
*
* Example: Saxs_spheres(R = 20, Phi = 1e-3, Delta_rho = 0.6, sigma_abs = 50, xwidth=0.01, yheight=0.01, zdepth=0.005)
*
* %Parameters
*
* INPUT PARAMETERS
*
* R: [AA] Radius of scattering hard spheres
* Phi: [1] Particle volume fraction
* Delta_rho: [fm/AA^3] Excess scattering length density
* radius: [m] Outer radius of sample in (x,z) plane for cylinder/sphere
* xwidth: [m] Horiz. dimension of sample, as a width
* yheight: [m] Vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] Depth of sample
* target_index: [1] Relative index of component to focus at, e.g. next is +1
* focus_xw: [m] Horiz. dimension of a rectangular area
* focus_yh: [m] Vert. dimension of a rectangular area
* focus_aw: [deg] Horiz. angular dimension of a rectangular area
* focus_ah: [deg] Vert. angular dimension of a rectangular area
* focus_r: [m] Detector (disk-shaped) radius
*
* Optional parameters:
* target_x: [m] Position of target to focus at, along X
* target_y: [m] Position of target to focus at, along Y
* target_z: [m] Position of target to focus at, along Z
* mu_c: [5] Column of the datafile which contains absorption coefficients.
* sphere_mtrl: [str] Material datafile from which to find absorption. If none is given absorption is neglected.
*
* %End
*******************************************************************************/
DEFINE COMPONENT Saxs_spheres
SETTING PARAMETERS (string sphere_mtrl="", R=100, Phi=1e-3, Delta_rho=0.6,
xwidth=0, yheight=0, zdepth=0, radius=0,
target_x = 0, target_y = 0, target_z = 6, int target_index=0,
focus_xw=0, focus_yh=0, focus_aw=0, focus_ah=0, focus_r=0, mu_c=0)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
DECLARE
%{
double my_s_pre;
int shape;
int Z;
double At;
double rho;
t_Table T;
int mu_ci;/*which column holds absorption mus*/
int abs_data;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth) shape=1; /* box */
else if (radius > 0 && yheight) shape=0; /* cylinder */
else if (radius > 0 && !yheight) shape=2; /* sphere */
if (shape < 0)
exit(fprintf(stderr,"Saxs_spheres: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("Saxs_spheres: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
/*check for existance of a sphere material datafile. If none is given absorption will be neglected.*/
if (sphere_mtrl && strlen(sphere_mtrl) && strcmp(sphere_mtrl,"NULL")){
int status;
if ( sphere_mtrl && (status=Table_Read(&(T),sphere_mtrl,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,sphere_mtrl);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(T.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
/*which columns holds the mus*/
if (mu_c){
mu_ci=mu_c;
}else{
/*not given so take a guess*/
mu_ci=5;
if (T.columns==3) mu_ci=1;
}
abs_data=1;
}else{
abs_data=0;
}
my_s_pre = Phi * 4*PI*R*R*R/3 * Delta_rho*Delta_rho;
%}
TRACE
%{
double l0, l1, v, l_full, l, l_1, dt, dl, d_phi, theta, my_a_v;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
double f, solid_angle, kx_i, ky_i, kz_i, k, q, qx, qy, qz;
char intersect=0;
/* Intersection particle trajectory / sample (sample surface) */
if (shape == 0)
intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, radius, yheight);
else if (shape == 1)
intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
else if (shape == 2)
intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, radius);
if(intersect)
{
if(l0 < 0){
fprintf(stderr,"photon already inside sample %s - absorbing\n",NAME_CURRENT_COMP);
ABSORB;
}
/* Xray enters at l=l0. */
k = sqrt(kx*kx + ky*ky + kz*kz);
l_full = (l1 - l0); /* Length of full path through sample */
dl = rand01()*(l1 - l0) + l0; /* Time of scattering */
PROP_DL(dl); /* Point of scattering */
l = (dl-l0); /* Penetration in sample */
kx_i=kx;
ky_i=ky;
kz_i=kz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(kx, ky, kz);
kx *= k;
ky *= k;
kz *= k;
qx = (kx_i-kx);
qy = (ky_i-ky);
qz = (kz_i-kz);
q = sqrt(qx*qx+qy*qy+qz*qz);
f = 3 * (sin(q*R) - q*R*cos(q*R))/(q*R*q*R*q*R);
/*calculate absorption*/
if(abs_data){
my_a_v=Table_Value(T,k*K2E,mu_ci);
}else{
my_a_v=0;
}
p *= l_full*solid_angle/(4*PI)*my_s_pre*f*f*exp(-my_a_v*(l+l1));
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
}
else if (shape == 1) { /* box */
box(0,0,0,xwidth,yheight,zdepth,0, 0, 1, 0);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, radius);
circle("xz", 0, 0.0, 0, radius);
circle("yz", 0, 0.0, 0, radius);
}
%}
END
|