File: hayter_msa.c

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (541 lines) | stat: -rw-r--r-- 14,551 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// Hayter-Penfold (rescaled) MSA structure factor for screened Coulomb interactions 
//
// C99 needs declarations of routines here
double Iq(double QQ,
      double radius_effective, double zz, double VolFrac, double Temp, double csalt, double dialec);
int
sqcoef(int ir, double gMSAWave[]);

int
sqfun(int ix, int ir, double gMSAWave[]);

double
sqhcal(double qq, double gMSAWave[]);
  
double Iq(double QQ,
      double radius_effective, double VolFrac, double zz, double Temp, double csalt, double dialec)
{
    double gMSAWave[17]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17};
	double Elcharge=1.602189e-19;		// electron charge in Coulombs (C)
	double kB=1.380662e-23;				// Boltzman constant in J/K
	double FrSpPerm=8.85418782E-12;	//Permittivity of free space in C^2/(N m^2)
	double SofQ, Qdiam, Vp, ss;
	double SIdiam, diam, Kappa, cs, IonSt;
	double  Perm, Beta;
	double charge;
	int ierr;
	
	diam=2*radius_effective;		//in A

						////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
						//////////////////////////// convert to USEFUL inputs in SI units                                                //
						////////////////////////////    NOTE: easiest to do EVERYTHING in SI units                               //
						////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
	Beta=1.0/(kB*Temp);		// in Joules^-1
	Perm=dialec*FrSpPerm;	//in C^2/(N  m^2)
	charge=zz*Elcharge;		//in Coulomb (C)
	SIdiam = diam*1.0E-10;		//in m
	Vp=M_4PI_3*cube(SIdiam/2.0);	//in m^3
	cs=csalt*6.022E23*1.0E3;	//# salt molecules/m^3
	
	//         Compute the derived values of :
	//			 Ionic strength IonSt (in C^2/m^3)  
	// 			Kappa (Debye-Huckel screening length in m)
	//	and		gamma Exp(-k)
	
	// the zz*VolFrac/Vp is for the counterions from the micelle, assumed monovalent, the 2.0*cs if for added salt, assumed 1:1 electolyte 
	IonSt=0.5 * Elcharge*Elcharge*(zz*VolFrac/Vp+2.0*cs);
	Kappa=sqrt(2*Beta*IonSt/Perm);     //Kappa calc from Ionic strength
									   //	Kappa=2/SIdiam					// Use to compare with HP paper
	gMSAWave[5]=Beta*charge*charge/(M_PI*Perm*SIdiam*square(2.0+Kappa*SIdiam));
	
	//         Finally set up dimensionless parameters 
	Qdiam=QQ*diam;
	gMSAWave[6] = Kappa*SIdiam;
	gMSAWave[4] = VolFrac;
	
	//Function sqhpa(qq)  {this is where Hayter-Penfold program began}
	
	//       FIRST CALCULATE COUPLING
	
	ss=pow(gMSAWave[4],(1.0/3.0));
	gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss);
	
	//        CALCULATE COEFFICIENTS, CHECK ALL IS WELL
	//        AND IF SO CALCULATE S(Q*SIG)
	
	ierr=0;
	ierr=sqcoef(ierr, gMSAWave);
	if (ierr>=0) {
		SofQ=sqhcal(Qdiam, gMSAWave);
	}else{
       	SofQ=NAN;
		//	print "Error Level = ",ierr
		//      print "Please report HPMSA problem with above error code"
	}
	
	return(SofQ);
}



/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
//
//
//      CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING
//      COEFFICIENTS FOR "SQHPA"
//
//      JOHN B. HAYTER   (I.L.L.)    14-SEP-81
//
//      ON EXIT:
//
//      SETA IS THE RESCALED VOLUME FRACTION
//      SGEK IS THE RESCALED CONTACT POTENTIAL
//      SAK IS THE RESCALED SCREENING CONSTANT
//      A,B,C,F,U,V ARE THE MSA COEFFICIENTS
//      G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG):
//      FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
//      ZERO INDICATES THE COMPUTATIONAL ACCURACY.
//
//      IR > 0:    NORMAL EXIT,  IR IS THE NUMBER OF ITERATIONS.
//         < 0:    FAILED TO CONVERGE
//
int
sqcoef(int ir, double gMSAWave[])
{	
	int itm=40,ix,ig,ii;
	double acc=5.0E-6,del,e1,e2,f1,f2;

	//      WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
	f1=0;		//these were never properly initialized...
	f2=0;
	
	ig=1;
	if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) {
		ig=0;
		gMSAWave[15]=gMSAWave[14];
		gMSAWave[16]=gMSAWave[4];
		ix=1;
		ir = sqfun(ix,ir,gMSAWave);
		gMSAWave[14]=gMSAWave[15];
		gMSAWave[4]=gMSAWave[16];
		if((ir<0.0) || (gMSAWave[14]>=0.0)) {
			return ir;
		}
	}
	gMSAWave[10]=fmin(gMSAWave[4],0.20);
	if ((ig!=1) || ( gMSAWave[9]>=0.15)) {
		ii=0;                             
		do {
			ii=ii+1;
			if(ii>itm) {
				ir=-1;
				return ir;		
			}
			if (gMSAWave[10]<=0.0) {
			    gMSAWave[10]=gMSAWave[4]/ii;
			}
			if(gMSAWave[10]>0.6) {
			    gMSAWave[10] = 0.35/ii;
			}
			e1=gMSAWave[10];
			gMSAWave[15]=f1;
			gMSAWave[16]=e1;
			ix=2;
			ir = sqfun(ix,ir,gMSAWave);
			f1=gMSAWave[15];
			e1=gMSAWave[16];
			e2=gMSAWave[10]*1.01;
			gMSAWave[15]=f2;
			gMSAWave[16]=e2;
			ix=2;
			ir = sqfun(ix,ir,gMSAWave);
			f2=gMSAWave[15];
			e2=gMSAWave[16];
			e2=e1-(e2-e1)*f1/(f2-f1);
			gMSAWave[10] = e2;
			del = fabs((e2-e1)/e1);
		} while (del>acc);
		gMSAWave[15]=gMSAWave[14];
		gMSAWave[16]=e2;
		ix=4;
		ir = sqfun(ix,ir,gMSAWave);
		gMSAWave[14]=gMSAWave[15];
		e2=gMSAWave[16];
		ir=ii;
		if ((ig!=1) || (gMSAWave[10]>=gMSAWave[4])) {
		    return ir;
		}
	}
	gMSAWave[15]=gMSAWave[14];
	gMSAWave[16]=gMSAWave[4];
	ix=3;
	ir = sqfun(ix,ir,gMSAWave);
	gMSAWave[14]=gMSAWave[15];
	gMSAWave[4]=gMSAWave[16];
	if ((ir>=0) && (gMSAWave[14]<0.0)) {
		ir=-3;
	}
	return ir;
}


int
sqfun(int ix, int ir, double gMSAWave[])
{	
	double acc=1.0e-6;
	double reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,rgek;
	double rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma;
	double al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5;
	double a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6;
	double w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56;
	double fa,fap,ca,e24g,pwk,qpw,pg,del,fun,fund,g24;
	int ii,ibig,itm=40;
	//      WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
	a2=0;
	a3=0;
	b2=0;
	b3=0;
	v2=0;
	v3=0;
	p2=0;
	p3=0;
	
	//     CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981)
	
	reta = gMSAWave[16];                                                
	eta2 = reta*reta;
	eta3 = eta2*reta;
	e12 = 12.0*reta;
	e24 = e12+e12;
	gMSAWave[13] = pow( (gMSAWave[4]/gMSAWave[16]),(1.0/3.0));
	gMSAWave[12]=gMSAWave[6]/gMSAWave[13];
	ibig=0;
	if (( gMSAWave[12]>15.0) && (ix==1)) {
		ibig=1;
	}
    
	gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]);
	rgek =  gMSAWave[11];
	rak =  gMSAWave[12];
	ak2 = rak*rak;
	ak1 = 1.0+rak;
	dak2 = 1.0/ak2;
	dak4 = dak2*dak2;
	d = 1.0-reta;
	d2 = d*d;
	dak = d/rak;
	dd2 = 1.0/d2;
	dd4 = dd2*dd2;
	dd45 = dd4*2.0e-1;
	eta3d=3.0*reta;
	eta6d = eta3d+eta3d;
	eta32 = eta3+ eta3;
	eta2d = reta+2.0;
	eta2d2 = eta2d*eta2d;
	eta21 = 2.0*reta+1.0;
	eta22 = eta21*eta21;
	
	//     ALPHA(I)
	
	al1 = -eta21*dak;
	al2 = (14.0*eta2-4.0*reta-1.0)*dak2;
	al3 = 36.0*eta2*dak4;
	
	//      BETA(I)
	
	be1 = -(eta2+7.0*reta+1.0)*dak;
	be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2;
	be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4;
	
	//      NU(I)
	
	vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak;
	vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2;
	vu3 = (eta32+3.0e1*reta-5.0)*dak4;
	vu4 = vu1+e24*rak*vu3;
	vu5 = eta6d*(vu2+4.0*vu3);
	
	//      PHI(I)
	
	ph1 = eta6d/rak;
	ph2 = d-e12*dak2;
	
	//      TAU(I)
	
	ta1 = (reta+5.0)/(5.0*rak);
	ta2 = eta2d*dak2;
	ta3 = -e12*rgek*(ta1+ta2);
	ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2);
	ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2;
	
	//     double PRECISION SINH(K), COSH(K)
	
	ex1 = exp(rak);
	ex2 = 0.0;
	if ( gMSAWave[12]<20.0) {
		ex2=exp(-rak);
	}
	sk=0.5*(ex1-ex2);
	ck = 0.5*(ex1+ex2);
	ckma = ck-1.0-rak*sk;
	skma = sk-rak*ck;
	
	//      a(I)
	
	a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4;
	if (ibig==0) {
		a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4;
		a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4;
	}
	
	//      b(I)
	
	b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4;
	if (ibig==0) {
		b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4;
		b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4;
	}
	
	//      V(I)
	
	v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45;
	if (ibig==0) {
		v2 = (vu4*ck-vu5*sk)*dd45;
		v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45;
	}
	
	
	//       P(I)
	
	pp1 = ph1*ph1;
	pp2 = ph2*ph2;
	pp = pp1+pp2;
	p1p2 = ph1*ph2*2.0;
	p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2;
	if (ibig==0) {
		p2 = (pp*sk+p1p2*ck)*dd2;
		p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2;
	}
	
	//       T(I)
	
	t1 = ta3+ta4*a1+ta5*b1;
	if (ibig!=0) {
		
		//		VERY LARGE SCREENING:  ASYMPTOTIC SOLUTION
		
  		v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45;
		t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0;
		p3 = (pp1-pp2)*dd2;
		b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4;
		a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4;
		um6 = t3*a3-e12*v3*v3;
		um5 = t1*a3+a1*t3-e24*v1*v3;
		um4 = t1*a1-e12*v1*v1;
		al6 = e12*p3*p3;
		al5 = e24*p1*p3-b3-b3-ak2;
		al4 = e12*p1*p1-b1-b1;
		w56 = um5*al6-al5*um6;
		w46 = um4*al6-al4*um6;
		fa = -w46/w56;
		ca = -fa;
		gMSAWave[3] = fa;
		gMSAWave[2] = ca;
		gMSAWave[1] = b1+b3*fa;
		gMSAWave[0] = a1+a3*fa;
		gMSAWave[8] = v1+v3*fa;
		gMSAWave[14] = -(p1+p3*fa);
		gMSAWave[15] = gMSAWave[14];
		if (fabs(gMSAWave[15])<1.0e-3) {
			gMSAWave[15] = 0.0;
		}
		gMSAWave[10] = gMSAWave[16];
		
	} else {
        
		t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk);
		t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0;
		
		//		MU(i)
		
		um1 = t2*a2-e12*v2*v2;
		um2 = t1*a2+t2*a1-e24*v1*v2;
		um3 = t2*a3+t3*a2-e24*v2*v3;
		um4 = t1*a1-e12*v1*v1;
		um5 = t1*a3+t3*a1-e24*v1*v3;
		um6 = t3*a3-e12*v3*v3;
		
		//			GILLAN CONDITION ?
		//
		//			YES - G(X=1+) = 0
		//
		//			COEFFICIENTS AND FUNCTION VALUE
		//
		if ((ix==1) || (ix==3)) {
			
			//			NO - CALCULATE REMAINING COEFFICIENTS.
			
			//			LAMBDA(I)
			
			al1 = e12*p2*p2;
			al2 = e24*p1*p2-b2-b2;
			al3 = e24*p2*p3;
			al4 = e12*p1*p1-b1-b1;
			al5 = e24*p1*p3-b3-b3-ak2;
			al6 = e12*p3*p3;
			
			//			OMEGA(I)
			
			w16 = um1*al6-al1*um6;
			w15 = um1*al5-al1*um5;
			w14 = um1*al4-al1*um4;
			w13 = um1*al3-al1*um3;
			w12 = um1*al2-al1*um2;
			
			w26 = um2*al6-al2*um6;
			w25 = um2*al5-al2*um5;
			w24 = um2*al4-al2*um4;
			
			w36 = um3*al6-al3*um6;
			w35 = um3*al5-al3*um5;
			w34 = um3*al4-al3*um4;
			w32 = um3*al2-al3*um2;
			//
			w46 = um4*al6-al4*um6;
			w56 = um5*al6-al5*um6;
			w3526 = w35+w26;
			w3425 = w34+w25;
			
			//			QUARTIC COEFFICIENTS
			
			w4 = w16*w16-w13*w36;
			w3 = 2.0*w16*w15-w13*w3526-w12*w36;
			w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526;
			w1 = 2.0*w15*w14-w13*w24-w12*w3425;
			w0 = w14*w14-w12*w24;
			
			//			ESTIMATE THE STARTING VALUE OF f
			
			if (ix==1) {
				//				LARGE K
				fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32);
			} else {
				//				ASSUME NOT TOO FAR FROM GILLAN CONDITION.
				//				IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE.
				gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek);
				if (( gMSAWave[11]<=2.0) && ( gMSAWave[11]>=0.0) && ( gMSAWave[12]<=1.0)) {
					e24g = e24*rgek*exp(rak);
					pwk = sqrt(e24g);
					qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d;
					gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2;
				}
  				pg = p1+gMSAWave[14];
				ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3;
				ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3));
				fap = -(pg+p2*ca)/p3;
			}
			
			//			AND REFINE IT ACCORDING TO NEWTON
			ii=0;
			do {
				ii = ii+1;
				if (ii>itm) {
					//					FAILED TO CONVERGE IN ITM ITERATIONS
					ir=-2;
					return (ir);
				}
				fa = fap;
				fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa;
				fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa;
				fap = fa-fun/fund;
				del=fabs((fap-fa)/fa);
			} while (del>acc);
			
			ir = ir+ii;
			fa = fap;
			ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12);
			gMSAWave[14] = -(p1+p2*ca+p3*fa);
			gMSAWave[15] = gMSAWave[14];
			if (fabs(gMSAWave[15])<1.0e-3) {
				gMSAWave[15] = 0.0;
			}
			gMSAWave[10] = gMSAWave[16];
		} else {
			ca = ak2*p1+2.0*(b3*p1-b1*p3);
			ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3));
			fa = -(p1+p2*ca)/p3;
			if (ix==2) {
				gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa;
			}
			if (ix==4) {
				gMSAWave[15] = -(p1+p2*ca+p3*fa);
			}
		}
   		gMSAWave[3] = fa;
		gMSAWave[2] = ca;
		gMSAWave[1] = b1+b2*ca+b3*fa;
		gMSAWave[0] = a1+a2*ca+a3*fa;
		gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0];
	}
   	g24 = e24*rgek*ex1;
	gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24);
	return (ir);
}

double
sqhcal(double qq, double gMSAWave[])
{      	
    double SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter; 		
	//	WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"

	etaz = gMSAWave[10];
	akz =  gMSAWave[12];
	gekz =  gMSAWave[11];
	e24 = 24.0*etaz;
	x1 = exp(akz);
	x2 = 0.0;
	if ( gMSAWave[12]<20.0) {
		x2 = exp(-akz);
	}
	ck = 0.5*(x1+x2);
	sk = 0.5*(x1-x2);
	ak2 = akz*akz;
	
	qk = qq/gMSAWave[13];
	q2k = qk*qk;
	if (qk<=1.0e-08) {
		SofQ = -1.0/gMSAWave[0];
	} else {
	// this rescales Q.sigma = 2.Q.Radius, so is hard to predict the value to test the function
	if (qk<=0.01) {
		// try Taylor series expansion at small qk (RKH Feb 2016, with help from Mathematica), 
		// transition point may need to depend on precision of cpu used and ALAS on the values of some of the parameters !
		// note have adsorbed a factor 24 from SofQ=
		// needs thorough test over wide range of parameter space!
		// there seem to be some rounding issues here in single precision, must use double
		aqk = gMSAWave[0]*(8.0+2.0*etaz) + 6*gMSAWave[1] -12.0*gMSAWave[3] 
			-24*(gekz*(1.0+akz) -ck*akz*gMSAWave[2] +gMSAWave[3]*(ck-1.0) +(gMSAWave[2]-gMSAWave[3]*akz)*sk )/ak2
			+q2k*( -(gMSAWave[0]*(48.0+15.0*etaz) +40.0*gMSAWave[1])/60.0 +gMSAWave[3] 
			+(4.0/ak2)*(gekz*(9.0+7.0*akz) +ck*(9.0*gMSAWave[3] -7.0*gMSAWave[2]*akz) +sk*(9.0*gMSAWave[2] -7.0*gMSAWave[3]*akz)) );
		SofQ = 1.0/(1.0-gMSAWave[10]*aqk);
	} else {
		qk2 = 1.0/q2k;
		qk3 = qk2/qk;
		qqk = 1.0/(qk*(q2k+ak2));
		SINCOS(qk,sink,cosk);
		asink = akz*sink;
		qcosk = qk*cosk;
		aqk = gMSAWave[0]*(sink-qcosk);
		aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk);
		inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink;
		aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3;
		aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk;
		aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk;
		aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2;
		aqk=aqk -gekz*(asink+qcosk)*qqk;
		SofQ = 1.0/(1.0  -e24*aqk);
	} }
	return (SofQ);
}